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Preface

Data science is now an established methodology to study biodiversity, and this is a
problem.

This may be an opportunity when it comes to advancing our knowledge of biodiversity,
and in particular when it comes to translating this knowledge into action (Tuia et al.
2022); but make no mistake, this is a problem for us, biodiversity scientists, as we
suddenly need to develop competences in an entirely new field. And as luck would have
it, there are easier fields to master than data science. The point of this book, therefore, is
to provide an introduction to fundamental concepts in data science, from the perspective
of a biodiversity scientist, by using examples corresponding to real-world use-cases of
these techniques.

But what do we mean by data science? Most science, after all, relies on data in some
capacity. What falls under the umbrella of data science is, in short, embracing in equal
measure quantitative skills (mathematics, machine learning, statistics), programming,
and domain expertise, in order to solve well-defined problems. A core tenet of data
science is that, when using it, we seek to “deliver actionable insights”, which is MBA-
speak for “figuring out what to do next”. One of the ways in which this occurs is by
letting the data speak, after they have been, of course, properly cleaned and transformed
and engineered beyond recognition. This entire process is driven by (or subject to, even)
domain knowledge. There is no such thing as data science, at least not in a vacuum:
there is data science as a methodology applied to a specific domain.

Before we embark into a journey of discovery on the applications of data science to
biodiversity, allow me to let you in on a little secret: data science is a little bit of a
misnomer.

To understand why, it helps to think of science (the application of the scientific method,
that is) as cooking. There are general techniques one must master, and specific steps
and cultural specifics, and there is a final product. When writing this preface, I turned
to my shelf of cookbooks, and picked my two favorites: Robuchon’s The Complete
Robuchon (a no-nonsense list of hundreds of recipes with no place for improvisation),
and Bianco’s Pizza, Pasta, and Other Food I Like (a short volume with very few pizza
and pasta, and wonderful discussions about the importance of humility, creativity, and
generosity). Data science, if it were cooking, would feel a lot like the second. Deviation
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Preface

from the rules (they are mostly recommendations, in fact) is often justifiable if you feel
like it. But this improvisation requires good skills, a clear mental map of the problem,
and a library of patterns that you can draw from.

This book will not get you here. But it will speed up the process, by framing the practice
of data science as a natural way to conduct research on biodiversity.
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1. Introduction

This book started as a collection of notes from several classes I gave in the Department
of Biological Sciences at the Université de Montréal, as well as a few workshops I
ran for the Québec Centre for Biodiversity Sciences. In teaching data synthesis, data
science, and machine learning to biology students, I realized that the field was missing
a stepping stone to proficiency. There are excellent manuals covering the mathematics
of data science and machine learning; there are many good papers giving overviews
of some applications of data science to biological problems; and there are, of course,
thousands of tutorials about how to write code (some of them are good!).

But one thing that students commonly called for was an attempt to tie concepts together,
and to explain when and how human decisions were required in ML approaches (Sul-
mont, Patitsas, and Cooperstock 2019). This is this attempt.

There are, broadly speaking, two situations in which reading this book is useful. The
first is when you are done reading some general books about machine learning, and want
to see how it can be applied to problems that are more specific to biodiversity research;
the second is when you have a working understanding of biodiversity research, and
want a stepping stone into the machine learning literature. Note that there is no scenario
where you stop after reading this book – this is by design. The purpose of this book
is to give a practical overview of “how data science for biodiversity happens”, and this
needs to be done in parallel to even more fundamental readings.

These are examples of books I like. I found them comprehensive and engaging. They
may not work for you.

A wonderful introduction to the mathematics behind machine learning can be found in
Deisenroth, Faisal, and Ong (2020), which provides stunning visualization of mathe-
matical concepts. Yau (2015) is a particularly useful book about the ways to visualize
data in a meaningful way. TK

When reading this book, I encourage you to read the chapters in order. They have
been designed to be read in order, because each chapter introduces the least possible
quantity of new concepts, but often requires to build on the previous chapters. This is
particularly true of the second half of this book.

note on the meaning of colors
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1. Introduction

1.1. Core concepts in data science

1.1.1. EDA

1.1.2. Clustering and regression

1.1.3. Supervised and unsupervised

1.1.4. Training, testing, and validation

1.1.5. Transformations and feature engineering

1.2. An overview of the content

In Chapter 2, we introduce some fundamental questions in data science, by working
on the clustering of pixels in Landsat data. The point of this chapter is to question the
way we think about data, and to start a discussion about an “optimal” model, hyper-
parameters, and what a “good” model is.

In Chapter 3, we revisit well-trodden statistical ground, by fitting a linear model to
linear data, but uisng gradient descent. This provides us with an opportunity to think
about what a “fitted” model is, whether it is possible to learn too much from data, and
why being able to think about predictions in the unit of our problem helps.

In Chapter 4, we start introducing one of the most important bit element of data science
practice, in the form of cross-validation. We apply this technique to the prediction of
plant phenology over a millenia, and think about the central question of “what kind of
decision-making can we justify with a model”.

In Section 6.2, we discuss data leakage, where it comes from, and how to prevent it.
This leads us to introducing the concept of data transformations as a model, which will
establish some best practices we will keep on using throughout this book.

In Chapter 5, we introduce the task of classification, and spend a lot of time thinking
about biases in predictions, which are acceptable, and which are not. We start building a
model for the distribution of the Reindeer, which we will improve over a few chapters.

In ?@sec-variable-selection, we explore ways to perform variable selection, think of
this task as being part of the training process, and introduce ideas related to dimension-
ality reduction. We further improve our distribution model.
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1.3. Some rules about this book

In Chapter 7, we conclude story arcs that had been initiated in a few previous chapters,
and explore training curves, the tuning of hyper-parameters, and moving-threshold clas-
sification. We provide the final refinements to out model of the Reindeer distribution.

In Chapter 8, we will shift our attention from prediction to understanding, and explore
techniques to quantify the importance of variables, as well as ways to visualize their
contribution to the predictions. In doing so, we will introduce concepts of model inter-
pretation and explainability.

In ?@sec-bagging, …

1.3. Some rules about this book

When I started aggregating these notes, I decided on a series of four rules. No code, no
simulated data, no long list of model, and above all, no iris dataset. In this section,
I will go through why I decided to adopt these rules, and how it should change the way
you interact with the book.

1.3.1. No code

This is, maybe, the most surprising rule, because data science is programming (in a
sense). But sometimes there is so much focus on programming that we lose track of
the other, important aspects of the practice of data science: abstractions, relationship
with data, and domain knowledge.

This book did involve a lot of code. Specifically, this book was written using Julia
(Bezanson et al. 2017), and every figure is generated by a notebook, and they are part
of the material I use when teaching from this content in the classroom. But code is not
a universal language, and unless you are really familiar with the language, code can
obfuscate. I had no intention to write a Julia book (or an R book, or a Python book).
The point is to think about data science applied to ecological research, and I felt like it
would be more inclusive to do this in a language agnostic way.

And finally, code rots. Code with more dependencies rots faster. It take a single change
in the API of a package to break the examples, and then you are left with a very ex-
pensive monitor stand. With a few exceptions, the examples in this book do not use
complicated packages either.
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1. Introduction

1.3.2. No simulated data

I have nothing against simulated data. I have, in fact, generated simulated data in many
different contexts, for training or for research. But the limit of simulated is that we
almost inevitably fail to include what makes real data challenging: noise, incomplete
or uneven sampling, data representation artifacts. And so when it is time to work on
real data, everything seems suddenly more difficult.

Simulated data have immense training value; but it is also important to engage with the
imperfect actual data, as we will overwhelmingly apply the concepts from this book
to them. For this reason, there are no simulated data in this book. Everything that
is presented correspond to an actual use case that proceeds from a question we could
reasonably ask in the context, paired with a dataset that could be used to answer this
question.

1.3.3. No model zoo

My favorite machine learning package is MLJ (Blaom et al. 2020). When given a
table of labels and a table of features, it will give back a series of models that match
with these data. It speeds up the discovery of models considerably, and is generally a
lot more informative than trying to read from a list of possible techniques. If I have
questions about an algorithm from this list, I can start reading more documentation
about how it works.

Reading a long enumeration of things is boring; unless it’s sung by Yakko Warner,
I’m not interested, and I refuse to inflict it on people. But more importantly, these
enumerations of models often distract from thinking about the problem we want to
solve in more abstract terms. I rarely wake up in the morning and think “oh boy I can’t
wait to train a SVM today”; chances are, my thought process will be closer to “I need
to tell the mushroom people where I think the next good foraging locations will be”.
The rest, is implementation details.

In fact, 90% of this book uses only two models: linear regression, and the Naïve Bayes
Classifier. Some other models are involved in a few chapters, but these two models are
breathtakingly simple, work surprisingly well, run fast, and can be tweaked to allow us
to build deep intuitions about how machines learn. They are perfect for the classroom,
and give us the freedom to spent most of our time thinking about how we interact with
models, and why, and how we make methodological decisions.
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1.3. Some rules about this book

1.3.4. No iris dataset

From a teaching point of view, the iris dataset is like hearing Smash Mouth in a
movie trailer, in that it tells you two things with absolute certainty. First, that you are
indeed watching a movie trailer. Second, that you could be watching Shrek instead.
There are datasets out there that are infinitely more exciting to use than iris.

But there is a far more important reason not to use iris: eugenics.

Listen, we made it several hundred words in a text about quantitative techniques in life
sciences without encountering a sad little man with racist ideas that academia decided
to ignore because “he just contributed so much to the field, and these were different
times, maybe we shouldn’t be so quick to judge?”. Ronald Aylmer Fisher, statistics’
most racist nerd, was such a man; and there are, of course, those who want to consider
the possibility that you can be outrageously racist as long as you are an outstanding
scientist (Bodmer et al. 2021).

The iris dataset was first published by Fisher (1936) in the Annals of Eugenics (so,
there’s a bit of a red flag there already), and draws from several publications by Edgar
Anderson, starting with Anderson (1928); Unwin and Kleinman (2021) have an inter-
esting historiographic deep-dive into the correspondence between the two. Judging by
the dates, you may think that Fisher was a product of his time. But this could not be
further from the truth. Fisher was dissatisfied with his time, to the point where his
contributions to statistics were done in service of his views, in order to provide the
appearance of scientific rigor to his bigotry.

Fisher advocated for forced sterilization for the “defectives” (which he estimated at,
oh, roughly 10% of the population), argued that not all races had equal capacity for
intellectual and emotional development, and held a host of related opinions. There is
no amount of contribution to science that pardon these views. Coming up with the idea
of the null hypothesis does not even out lending “scientific” credibility to ideas whose
logical (and historical) conclusion is genocide. That Ronald Fisher is still described as
a polymath and a genius is infuriating, and we should use every alternative to his work
that we have.

Thankfully, there are alternatives!

The most broadly known alternative to the iris dataset is penguins, which was
collected by ecologists (Gorman, Williams, and Fraser 2014), and published as a stan-
dard dataset (Horst, Hill, and Gorman 2020) so that we can train students without en-
gaging with the “legacy” of eugenicists. The penguins dataset is also genuinely
good! The classes are not so obviously separable, there are some missing data that
reflect the reality of field work, and the data about sex and spatial location have been
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1. Introduction

preserved, which increases the diversity of questions we can ask. We won’t use pen-
guins either. It’s a fine dataset, but at this point there is little that we can write around
it that would be new, or exciting. But if you want to apply some of the techniques in
this book? Go penguins.

References

Anderson, Edgar. 1928. “The Problem of Species in the Northern Blue Flags, Iris
Versicolor l. And Iris Virginica l.” Annals of the Missouri Botanical Garden 15
(3): 241. https://doi.org/10.2307/2394087.

Bezanson, Jeff, Alan Edelman, Stefan Karpinski, and Viral B. Shah. 2017. “Julia: A
Fresh Approach to Numerical Computing.” SIAM Review 59 (1): 65–98. https:
//doi.org/10.1137/141000671.

Blaom, Anthony, Franz Kiraly, Thibaut Lienart, Yiannis Simillides, Diego Arenas, and
Sebastian Vollmer. 2020. “MLJ: A Julia Package for Composable Machine Learn-
ing.” Journal of Open Source Software 5 (55): 2704. https://doi.org/10.21105/joss.
02704.

Bodmer, Walter, R. A. Bailey, Brian Charlesworth, Adam Eyre-Walker, Vernon
Farewell, Andrew Mead, and Stephen Senn. 2021. “The Outstanding Scientist,
R.A. Fisher: His Views on Eugenics and Race.” Heredity 126 (4): 565–76.
https://doi.org/10.1038/s41437-020-00394-6.

Deisenroth, Marc Peter, A. Aldo Faisal, and Cheng Soon Ong. 2020. “Mathematics
for Machine Learning,” February. https://doi.org/10.1017/9781108679930.

Fisher, R. A. 1936. “The Use Of Multiple Measurements In Taxonomic Problems.” An-
nals of Eugenics 7 (2): 179–88. https://doi.org/10.1111/j.1469-1809.1936.tb02137.
x.

Gorman, Kristen B., Tony D. Williams, and William R. Fraser. 2014. “Ecological
Sexual Dimorphism and Environmental Variability Within a Community of Antarc-
tic Penguins (Genus Pygoscelis).” Edited by André Chiaradia. PLoS ONE 9 (3):
e90081. https://doi.org/10.1371/journal.pone.0090081.

Horst, Allison M, Alison Presmanes Hill, and Kristen B Gorman. 2020. Allison-
horst/Palmerpenguins: V0.1.0. Zenodo. https://doi.org/10.5281/ZENODO.
3960218.

Sulmont, Elisabeth, Elizabeth Patitsas, and Jeremy R. Cooperstock. 2019. “Can You
Teach Me to Machine Learn?” Proceedings of the 50th ACM Technical Sympo-
sium on Computer Science Education, February. https://doi.org/10.1145/3287324.
3287392.

Unwin, Antony, and Kim Kleinman. 2021. “The Iris Data Set: In Search of the
Source of Virginica.” Significance 18 (6): 26–29. https://doi.org/10.1111/1740-

8

https://doi.org/10.2307/2394087
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://doi.org/10.21105/joss.02704
https://doi.org/10.21105/joss.02704
https://doi.org/10.1038/s41437-020-00394-6
https://doi.org/10.1017/9781108679930
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1371/journal.pone.0090081
https://doi.org/10.5281/ZENODO.3960218
https://doi.org/10.5281/ZENODO.3960218
https://doi.org/10.1145/3287324.3287392
https://doi.org/10.1145/3287324.3287392
https://doi.org/10.1111/1740-9713.01589
https://doi.org/10.1111/1740-9713.01589


References

9713.01589.
Yau, Nathan. 2015. “Visualize This,” October. https://doi.org/10.1002/9781118722213.

9

https://doi.org/10.1111/1740-9713.01589
https://doi.org/10.1111/1740-9713.01589
https://doi.org/10.1002/9781118722213




2. Clustering

As we mentioned in the introduction, a core idea of data science is that things that look
the same (in that, when described with data, they resemble one another) are likely to
be the same. Although this sounds like a simplifying assumption, this can provide the
basis for approaches in which we create groups in data that have no labels. This task is
called clustering: we seek to add a label to each observation, in order to form groups,
and the data we work from do not have a label that we can use to train a model. In this
chapter, we will explore the k-means algorithm for clustering, and illustrate how it can
be used in practice.

2.1. A digression: which birds are red?

Before diving in, it is a good idea to ponder a simple case. We can divide everything
in just two categories: things with red feathers, and things without red feathers. An
example of a thing with red feathers is the Northern Cardinal (Cardinalis cardinalis),
and things without red feathers are the iMac G3, Haydn’s string quartets, and of course
the Northern Cardinal (Cardinalis cardinalis).

See, biodiversity data science is complicated, because it tends to rely on the assumption
that we can categorize the natural world, and the natural world (mostly in response to
natural selection) comes up with ways to be, well, diverse and hard to categorize. In
the Northern Cardinal, this is shown in males having red feathers, and females having
mostly brown feathers. Before moving forward, we need to consider ways to solve this
issue, as this issue will come up all the time.

The first mistake we have made is that the scope of objects we want to classify, which
we will describe as the “domain” of our classification, is much too broad: there are few
legitimate applications where we will have a dataset with Northern Cardinals, iMac
G3s, and Haydn’s string quartets. Picking a reasonable universe of classes would have
solved our problem a little. For example, among the things that do not have red feathers
are the Mourning Dove, the Kentucky Warbler, and the House Sparrow.

The second mistake that we have made is improperly defining our classes; bird species
exhibit sexual dimorphism (not in an interesting way, like wrasses, but let’s give them
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some credit for trying). Assuming that there is such a thing as a Northern Cardinal is
not necessarily a reasonable assumption! And yet, the assumption that a single label
is a valid representation of non-monomorphic populations is a surprisingly common
one, with actual consequences for the performance of image classification algorithms
(Luccioni and Rolnick 2023). This assumption reveals a lot about our biases: male spec-
imens are over-represented in museum collections, for example (Cooper et al. 2019).
In a lot of species, we would need to split the taxonomic unit into multiple groups in
order to adequately describe them.

The third mistake we have made is using predictors that are too vague. The “presence
of red feathers” is not a predictor that can easily discriminate between the Northen
Cardinal (yes for males, sometimes for females), the House Finch (a little for males, no
for females), and the Red-Winged Black Bird (a little for males, no for females). In fact,
it cannot really capture the difference between red feathers for the male House Finch
(head and breast) and the male Red Winged Black Bird (wings, as the name suggests).

The final mistake we have made is in assuming that “red” is relevant as a predictor. In
a wonderful paper, Cooney et al. (2022) have converted the color of birds into a bird-
relevant colorimetric space, revealing a clear latitudinal trend in the ways bird colors,
as perceived by other birds, are distributed. This analysis, incidentally, splits all species
into males and females. The use of a color space that accounts for the way colors are
perceived is a fantastic example of why data science puts domain knowledge front and
center.

Deciding which variables are going to be accounted for, how the labels will be defined,
and what is considered to be within or outside the scope of the classification problem
is difficult. It requires domain knowledge (you must know a few things about birds in
order to establish criteria to classify birds), and knowledge of how the classification
methods operate (in order to have just the right amount of overlap between features in
order to provide meaningful estimates of distance).

2.2. The problem: classifying pixels from an image

Throughout this chapter, we will work on a single image – we may initially balk at
the idea that an image is data, but it is! Specifically, an image is a series of instances
(the pixels), each described by their position in a multidimensional colorimetric space.
Greyscale images have one dimension, and images in color will have three: their red,
green, and blue channels. Not only are images data, this specific dataset is going to be
far larger than many of the datasets we will work on in practice: the number of pixels
we work with is given by the product of the width, height, and depth of the image!
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2.2. The problem: classifying pixels from an image

In fact, we are going to use an image with many dimensions: the data in this chapter
are coming from a Landsat 9 scene (Vermote et al. 2016), for which we have access to
9 different bands.

Table 2.1.: Overview of the bands in a Landsat 9 scene. The data from this chapter
were downloaded from LandsatLook.

Band Measure Notes

1 Aerosol Good proxy for Chl. in oceans
2 Visible blue
3 Visible green
4 Visible red
5 Near-infrared (NIR) Reflected by healthy plants
6, 7 Short wavelength IR

(SWIR 1)
Good at differentiating wet earth
and dry earth

8 Panchromatic High-resolution monochrome
9 Cirrus band Can pick up high and thin clouds
10, 11 Thermal infrared

By using the data present in the channels, we can reconstruct an approximation of what
the landscape looked like (by using the red, green, and blue channels).

Or can we?

If we were to invent a time machine, and go stand directly under Landsat 9 at the exact
center of this scene, and look around, what would we see? We would see colors, and
they would admit a representation as a three-dimensional vector of red, green, and blue.
But we would see so much more than that! And even if we were to stand within a pixel,
we would see a lot of colors. And texture. And depth. We would see something entirely
different from this map; and we would be able to draw a lot more inferences about our
surroundings than what is possible by knowing the average color of a 30x30 meters
pixel. But just like we can get more information that Landsat 9, so too can Landsat 9
out-sense us when it comes to getting information. In the same way that we can extract
a natural color composite out of the different channels, we can extract a fake color one
to highlight differences in the landscape.

In Figure 2.1, we compare the natural color reconstruction (top) to a false color com-
posite. All of the panels in Figure 2.1 represent the same physical place at the same
moment in time; but through them, we are looking at this place with very different
purposes. This is not an idle observation, but a core notion in data science: what we
measure defines what we can see. In order to tell something ecologically meaningful
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2. Clustering

Figure 2.1.: The Landsat 9 data are combined into the “Natural Color” image, in which
the red, green, and blue bands are mapped to their respective channels (left).
The other composites is a 6-5-4 image meant to show differences between
urban areas, vegetations, and crops. Note that the true-color composite is
slightly distored compared to the colors of the landscape we expect; this is
because natural colors are difficult to reproduce accurately.
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about this place, we need to look at it in the “right” way. Of course, although remote
sensing offers a promising way to collect data for biodiversity monitoring at scale (Gon-
zalez et al. 2023), there is no guarantee that it will be the right approach for all problems.
More (fancier) data is not necessarily right for all problems.

We will revisit the issue of
variable selection and feature
engineering in
?@sec-variable-selection.

So far, we have looked at this area by combining the raw data. Depending on the
question we have in mind, they may not be the right data. In fact, they may not hold
information that is relevant to our question at all; or worse, they can hold more noise
than signal. The area we will work on in this chapter is a very small crop of a Landsat
9 scene, taken on path 14 and row 28, early in late June 2023. It shows the western
tip of the island of Montréal, as well as Lake Saint-Louis to the south (not actually a
lake), Lake Deux-Montages to the north (not actually a lake either), and a small part of
Oka national park. This is an interesting area because it has a high variety of environ-
ments: large bodies of water, forested areas (bright green in the composite), densely
urbanized places (bright purple and white in the composite), less densely urbanized
(green-brown), and cropland to the western tip of the island.

But can we classify these different environments starting in an ecologically relevant
way? Based on our knowledge of plants, we can start thinking about this question in
a different way. Specifically, “can we guess that a pixel contains plants?”, and “can
we guess at how much water there is in a pixel?”. Thankfully, ecologists, whose hob-
bies include (i) guesswork and (ii) plants, have ways to answer these questions rather
accurately.

One way to do this is to calculate the normalized difference vegetation index, or NDVI
(Kennedy and Burbach 2020). NDVI is derived from the band data (NIR - Red), and
there is an adequate heuristic using it to make a difference between vegetation, barren
soil, and water. Because plants are immediately tied to water, we can also consider the
NDWI (water; Green - NIR) and NDMI (moisture; NIR - SWIR1) dimensions: taken to-
gether, these information will represent every pixel in a three-dimensional space, telling
us whether there are plants (NDVI), whether they are stressed (NDMI), and whether
this pixel is a water body (NDWI). Other commonly used indices based on Landsat 9
data include the NBR (Normalized Burned Ratio), for which high values are suggestive
of a history of intense fire (Roy, Boschetti, and Trigg 2006 have challenged the idea that
this measure is relevant immediately post-fire), and the NDBI (Normalized Difference
Built-up Index) for urban areas.

We can look at the relationship between the NDVI and NDMI data Figure 2.2. For
example, NDMI values around -0.1 are low-canopy cover with low water stress; NDVI
values from 0.2 to 0.5 are good candidates for moderately dense crops. Notice that
there is a strong (linear) relationship between NDVI and NDMI. Indeed, none of these
indices are really independent; this implies that they are likely to be more informative
taken together than when looking at them one at a time (Zheng et al. 2021). Indeed,
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Figure 2.2.: The pixels acquired from Landsat 9 exist in a space with many different
dimensions (one for each band). Because we are interested in a landscape
classification based on water and vegetation data, we use the NDVI, NDMI,
and NDWI combinations of bands. These are derived data, and represent
the creation of new features from the raw data. Darker colors indicate more
pixels in this bin.

urban area tend to have high values of the NDWI, which makes the specific task of
looking for swimming pools (for mosquito control) more challenging than it sounds
(McFeeters 2013).

By picking these four transformed values, instead of simply looking at the clustering of
all the bands in the raw data, we are starting to refine what the algorithm sees, through
the lens of what we know is important about the system. With these data in hands, we
can start building a classification algorithm.

2.3. The theory behind k-means clustering

In order to understand the theory underlying k-means, we will work backwards from its
output. As a method for clustering, k-means will return a vector of class memberships,
which is to say, a list that maps each observation (pixel, in our case) to a class (tenta-
tively, a cohesive landscape unit). What this means is that k-means is a transformation,
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taking as its input a vector with three dimensions (NDVI, NDMI, NDWI), and return-
ing a scalar (an integer, even!), giving the class to which this pixel belongs. Pixels only
belongs to one class. These are the input and output of our blackbox, and now we can
start figuring out its internals.

2.3.1. Inputs and parameters

Throughout this book, we will use
X to note the matrix of features,
and y to note the vector of labels.
Instances are columns of the
features matrix, noted x𝑖.

In k-means, a set of observations x𝑖 are assigned to a set of classes C, also called the
clusters. All x𝑖 are vectors with the same dimension (we will call it 𝑓 , for features),
and we can think of our observations as a matrix of features X of size (𝑓, 𝑛), with 𝑓
features and 𝑛 observations (the columns of this matrix).

The number of classes of C is |C| = 𝑘, and 𝑘 is an hyper-parameter of the model,
as it needs to fixed before we start running the algorithm. Each class is defined by
its centroid, a vector c with 𝑓 dimensions (i.e. the centroid corresponds to a poten-
tial “idealized” observation of this class in the space of the features), which k-means
progressively refines.

2.3.2. Assigning instances to classes

Of course, the correct distance
measure to use depends on what
is appropriate for the data!

Instances are assigned to the class for which the distance between themselves and the
centroid of this class is lower than the distance between themselves and the centroid of
any other class. To phrase it differently, the class membership of an instance x𝑖 is given
by

argmin𝑗 ∥x𝑖 − c𝑗∥2 , (2.1)

which is the value of 𝑗 that minimizes the 𝐿2 norm (‖ ⋅ ‖2, the Euclidean distance)
between the instance and the centroid; argmin𝑗 is the function returning the value of
𝑗 that minimizes its argument. For example, argmin(0.2, 0.8, 0.0) is 3, as the third
argument is the smallest. There exists an argmax function, which works in the same
way.

2.3.3. Optimizing the centroids

Of course, what we really care about is the assignment of all instances to the classes. For
this reason, the configuration (the disposition of the centroids) that solves our specific
problem is the one that leads to the lowest possible variance within the clusters. As
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it turns out, it is not that difficult to go from Equation 2.1 to a solution for the entire
problem: we simply have to sum over all points!

This leads to a measure of the variance, which we want to minimize, expressed as

𝑘
∑
𝑖=1

∑
x∈C𝑖

‖x − c𝑖‖2 . (2.2)

The part that is non-trivial is now to decide on the value of c for each class. This is
the heart of the k-means algorithm. From Equation 2.1, we have a criteria to decide to
which class each instance belongs. Of course, there is nothing that prevents us from
using this in the opposite direction, to define the instance by the points that form it! In
this approach, the membership of class C𝑗 is the list of points that satisfy the condition
in Equation 2.1. But there is no guarantee that the current position of c𝑗 in the middle
of all of these points is optimal, i.e. that it minimizes the within-class variance.

This is easily achieved, however. To ensure that this is the case, we can re-define the
value of c𝑗 as

c𝑗 = 1
|C𝑗|

∑ C𝑗 , (2.3)

where | ⋅ | is the cardinality of (number of istances in) C𝑗, and ∑ C𝑗 is the sum of each
feature in C𝑗. To put it plainly: we update the centroid of C𝑗 so that it takes, for each
feature, the average value of all the instances that form C𝑗.

2.3.4. Updating the classes

Repeating a step multiple times in
a row is called an iterative process,

and we will see a lot of them.

Once we have applied Equation 2.3 to all classes, there is a good chance that we have
moved the centroids in a way that moved them away from some of the points, and closer
to others: the membership of the instances has likely changed. Therefore, we need to
re-start the process again, in an iterative way.

But until when?

Finding the optimal solution for a set of points is an NP-hard problem (Aloise et al.
2009), which means that we will need to rely on a little bit of luck, or a whole lot of
time. The simplest way to deal with iterative processes is to let them run for a long time,
as after a little while they should converge onto an optimum (here, a set of centroids
for which the variance is as good as it gets), and hope that this optimum is global and
not local.
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A global optimum is easy to define: it is the state of the solution that gives the best
possible result. For this specific problem, a global optimum means that there are no
other combinations of centroids that give a lower variance. A local optimum is a little
bit more subtle: it means that we have found a combination of centroids that we cannot
improve without first making the variance worse. Because the algorithm as we have
introduced it in the previous sections is greedy, in that it makes the moves that give the
best short-term improvement, it will not provide a solution that temporarily makes the
variance higher, and therefore is susceptible to being trapped in a local optimum.

In order to get the best possible solution, it is therefore common to run k-means multiple
times for a given 𝑘, and to pick the positions of the centroids that give the best overall
fit.

2.3.5. Identification of the optimal number of clusters

One question that is left un-answered is the value of 𝑘. How do we decide on the number
of clusters?

There are two solutions here. One is to have an a priori knowledge of the number of
classes. For example, if the purpose of clustering is to create groups for some specific
task, there might be an upper/lower bound to the number of tasks you are willing to
consider. The other solution is to run the algorithm in a way that optimizes the number
of clusters for us.

This second solution turns out to be rather simple with k-means. We need to change
the value of 𝑘, run it on the same dataset several times, and then pick the solution that
was optimal. But this is not trivial. Simply using Equation 2.2 would lead to always
preferring many clusters. After all, each point in its own cluster would get a pretty low
variance!

For this reason, we use measures of optimality that are a little more refined. One of
them is the Davies and Bouldin (1979) method, which is built around a simple idea:
an assignment of instances to clusters is good if the instances within a cluster are not
too far away from the centroids, and the centroids are as far away from one another as
possible.

The Davies-Bouldin measure is striking in its simplicity. From a series of points and
their assigned clusters, we only need to compute two things. The first is a vector s,
which holds the average distance between the points and their centroids (this is the
∥x𝑖 − c𝑗∥2 term in Equation 2.1, so this measure still relates directly to the variance);
the second is a matrix M, which measures the distances between the centroids.
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These two information are combined in a matrix R, wherein R𝑖𝑗 = (𝑠𝑖 + 𝑠𝑗)/M𝑖𝑗.
The interpretation of this term is quite simply: is the average distance within clusters 𝑖
and 𝑗 much larger compared to the distance between these clusters. This is, in a sense,
a measure of the stress that these two clusters impose on the entire system. In order
to turn this matrix into a single value, we calculate the maximum value (ignoring the
diagonal!) for each row: this is a measure of the maximal amount of stress in which a
cluster is involved. By averaging these values across all clusters, we have a measure of
the quality of the assignment, that can be compared for multiple values of 𝑘.

Note that this approach protects us against the each-point-in-its-cluster situation: in this
scenario, the distance between clusters would decrease really rapidly, meaning that the
values in R would increase; the Davies-Bouldin measure indicates a better clustering
when the values are lower.

In fact, there is very little
enumeration of techniques in this

book. The important point is to
understand how all of the pieces
fit together, not to make a census

of all possible pieces.

There are alternatives to this method, including silhouettes (Rousseeuw 1987) and the
technique of Dunn (1974). The question of optimizing the number of clusters goes back
several decades (Thorndike 1953), and it still actively studied. What matter is less to
give a comprehensive overview of all the measures: the message here is to pick one
that works (and can be justified) for your specific problem!

2.4. Application: optimal clustering of the satellite image data

2.4.1. Initial run

Before we do anything else, we need to run our algorithm with a random pick of hyper-
parameters, in order to get a sense of how hard the task ahead is. In this case, using
𝑘 = 3, we get the results presented in Figure 2.3.

After iterating the k-means algorithm, we obtain a classification for every
pixel in the landscape. This classification is based on the values of NDVI,
NDMI, and NDWI indices, and therefore groups pixels based on specific
assumptions about vegetation and stress. This clustering was produced
using 𝑘 = 3, i.e. we want to see what the landscape would look like when
divided into three categories.

In fact, take some time to think
about how you would use

𝑘-means to come up with a way
to remove pixels with only water

from this image!

It is always a good idea to look at the first results and state the obvious. Here, for
example, we can say that water is easy to identify. In fact, removing open water pixels
from images is an interesting image analysis challenge (Mondejar and Tongco 2019),
and because we used an index that specifically identifies water bodies (NDWI), it is not
surprising that there is an entire cluster that seems to be associated with water. But if
we take a better look, it appears that there groups of pixels that represent dense urban
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Figure 2.3.: caption

areas that are classified with the water pixels. When looking at the landscape in a space
with three dimensions, it looks like separating densely built-up environment and water
is difficult.

This might seem like an idle observation, but this is not the case! It means that when
working on vegetation-related questions, we will likely need at least one cluster for
water, and one cluster for built-up areas. This is helpful information, because we can
already think about how many classes of vegetation we are willing to accept, and add
(at least) two clusters to capture other types of cover.

2.4.2. Optimal number of pixels

We will revisit the issue of tuning
the hyper-parameters in more
depth in Chapter 7.

In order to produce Figure 2.3, we had to guess at a number of classes we wanted
to split the landscape into. This introduces two important steps in coming up with a
model: starting with initial parameters in order to iterate rapidly, and then refining these
parameters to deliver a model that is fit for purpose. Our discussion in Section 2.4.1,
where we concluded that we needed to keep (maybe) two classes for water and built-up
is not really satisfying, as we do not yet have a benchmark to evaluate the correct value
of 𝑘; we know that it is more than 3, but how much more?

We will now change the values of 𝑘 and use the Davies and Bouldin (1979) measure
introduced in Section 2.3.5 to identify the optimal value of 𝑘. The results are presented
in Figure 2.4. Note that we only explore 𝑘 ∈ [3, 10]. More than 8 categories is probably
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not very actionable, and therefore we can make the decision to only look at this range of
parameters. Sometimes (always!) the best solution is the one that gets your job done.

There are two interesting things in Figure 2.4. First, note that for 𝑘 = {3, 4}, there is
almost no dispersal: all of the assignments have the exact same score, which is unlikely
to happen except if the assignments are the same every time! This is a good sign, and,
anecdotally, something that might suggest a really information separation of the points.
Second, 𝑘 = 3 has by far the lowest Davies-Bouldin index of all values we tried, and
is therefore strongly suggestive of an optimal hyper-parameter. But in Figure 2.3, we
already established that one of these clusters was capturing both water and built-up
environments, so although it may look better from a quantitative point of view, it is not
an ideal solution for the specific problem we have.

In this specific case, it makers very little sense not to use 𝑘 = 4 or 𝑘 = 5. They have
about the same performance, but this gives us potentially more classes that are neither
water nor built-up. This image is one of many cases where it is acceptable to sacrifice
a little bit of optimality in order to present more actionable information. Based on the
results in this section, we will pick the largest possible 𝑘 that does not lead to a drop in
performance, which in our case is 𝑘 = 5.

2.4.3. Clustering with optimal number of classes

The clustering of pixels using 𝑘 = 5 is presented in Figure 2.5. Unsurprisingly, k-
means separated the open water pixels, the dense urban areas, as well as the more
forested/green areas. Now is a good idea to start thinking about what is representative
of these clusters: one is associated with very high NDWI value (these are the water
pixels), and two classes have both high NDVI and high NDMI (suggesting different
categories of vegetation).

� Warning: The clustering cost increased at iteration #37
� @ Clustering ~/.julia/packages/Clustering/wNDPu/src/kmeans.jl:191

We will revisit the issue of
understanding how a model

makes a prediction in Chapter 8.

The relative size of the clusters (as well as the position of their centroids) is presented
in Table 2.2. There is a good difference in the size of the clusters, which is an important
thing to note. Indeed, a common myth about k-means is that it gives clusters of the same
size. This “size” does not refer to the cardinality of the clusters, but to the volume that
they cover in the space of the parameters. If an area of the space of parameters is more
densely packed with instances, the cluster covering the area will have more points!

In fact, this behavior makes
k-means excellent at creating

color palettes from images! Cases
in point, Karthik Ram’s Wes

Anderson palettes, and David
Lawrence Miller’s Beyoncé

palettes. Let it never again be said
that ecologists should not be

trusted with machine learning
methods.
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Figure 2.4.: Results of running the k-means algorithm ten times for each number of clus-
ters between 3 and 8. The average Davies-Bouldin and cost are reported,
as well as the standard deviation. As expected, the total cost decreases with
more clusters, but this is not necessarily the sign of a better clustering.
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Figure 2.5.: Results of the landscape clustering with k=5 clusters. This number of clus-
ters gives us a good separation between different groups of pixels, and
seems to capture features of the landscape as revealed with the false-color
composites.

Table 2.2.: Summary of the values for the centers of the optimal clusters found in this
image. The cover column gives the percentage of all pixels associated to
this class. The clusters are sorted by the NDVI of their centroid.

Cluster Cover NDVI NDWI NDMI

1 38 -0.018 0.012 0.006
4 10 0.096 -0.152 0.005
3 19 0.224 -0.262 0.08
5 17 0.32 -0.343 0.139
2 16 0.439 -0.443 0.223
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Figure 2.6.: Visualisation of the clustering output as a function of the NDVI and NDMI
values. Note that the limits between the clusters are lines (planes), and that
each cluster covers about the same volume in the space of parameters.

The area of the space of parameters covered by each cluster in represented in Figure 2.6,
and this result is actually not surprising, if we spend some time thinking about how k-
means work. Because our criteria to assign a point to a cluster is based on the being
closest to its centroid than to any other centroid, we are essentially creating Voronoi
cells, with linear boundaries between them.

By opposition to a model based on, for example, mixtures of Gaussians, the assignment
of a point to a cluster in k-means is independent of the current composition of the
cluster (modulo the fact that the current composition of the cluster is used to update the
centroids). In fact, this makes k-means closer to (or at least most efficient as) a method
for quantization (Gray 1984).

2.5. Conclusion

In this chapter, we have used the k-means algorithm to create groups in a large dataset
that had no labels, i.e. the points were not assigned to a class. By picking the features
we wanted to cluster the point, we were able to highlight specific aspects of the land-
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scape. In Chapter 3, we will start adding labels to our data, and shift our attention from
classification to regression problems.
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3. Gradient descent

As we progress into this book, the process of delivering a trained model is going to
become more and more complex. In Chapter 2, we worked with a model that did not
really require training (but did require to pick the best hyper-parameter). In this chapter,
we will only increase complexity very slightly, by considering how we can train a model
when we have a reference dataset to compare to.

Doing do will require to introduce several new concepts, and so the “correct” way to
read this chapter is to focus on the high-level process. The problem we will try to solve
(which is introduced in Section 3.2) is very simple; in fact, the empirical data looks
more fake than many simulated datasets!

3.1. A digression: what is a trained model?

Models are data. When a model is trained, it represents a series of measurements (its
parameters), taken on a representation of the natural world (the training data), through
a specific instrument (the model itself, see e.g. Morrison and Morgan 1999). A trained
model is, therefore, capturing our understanding of a specific situation we encountered.
We need to be very precise when defining what, exactly, a model describes. In fact, we
need to take a step back and try to figure out where the model stops.

As we will see in this chapter, then in Chapter 4, and finally in Chapter 7, the fact of
training a model means that there is a back and forth between the algorithm we train,
the data we use for training, and the criteria we set to define the performance of the
trained model. The algorithm bound to its dataset is the machine we train in machine
learning.

Therefore, a trained model is never independent from its training data: they describe
the scope of the problem we want to address with this model. In Chapter 2, we ended
up with a machine (the trained k-means algorithm) whose parameters (the centroids of
the classes) made sense in the specific context of the training data we used; applied to
a different dataset, there are no guarantees that our model would deliver useful infor-
mation.
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3. Gradient descent

For the purpose of this book, we will consider that a model is trained when we have
defined the algorithm, the data, the measure through which we will evaluate the model
performance, and then measured the performance on a dataset built specifically for this
task. All of these elements are important, as they give us the possibility to explain
how we came up with the model, and therefore, how we made the predictions. This
is different from reasoning about why the model is making a specific prediction (we
will discuss this in Chapter 8), and is more related to explaining the process, the “outer
core” of the model. As you read this chapter, pay attention to these elements: what
algorithm are we using, on what data, how do we measure its performance, and how
well does it perform?

3.2. The problem: how many interactions in a food web?

One of the earliest observation that ecologists made about food webs is that when there
are more species, there are more interactions. A remarkably insightful crowd, food web
ecologists. Nevertheless, it turns out that this apparently simple question had received
a few different answers over the years.

The initial model was proposed by Cohen and Briand (1984): the number of interac-
tions 𝐿 scales linearly with the number of species 𝑆. After all, we can assume that
when averaging over many consumers, there will be an average diversity of resources
they consume, and so the number of interactions could be expressed as 𝐿 ≈ 𝑏 × 𝑆.

Not so fast, said Martinez (1992). When we start looking a food webs with more species,
the increase of 𝐿 with regards to 𝑆 is superlinear. Thinking in ecological terms, maybe
we can argue that consumers are flexible, and that instead of sampling a set number
of resources, they will sample a set proportion of the number of consumer-resource
combinations (of which there are 𝑆2). In this interpretation, 𝐿 ≈ 𝑏 × 𝑆2.

But the square term can be relaxed; and there is no reason not to assume a power law,
with 𝐿 ≈ 𝑏 × 𝑆𝑎. This last formulation has long been accepted as the most workable
one, because it is possible to approximate values of its parameters using other ecological
processes (Brose et al. 2004).

The “reality” (i.e. the relationship between 𝑆 and 𝐿 that correctly accounts for ecolog-
ical constraints, and fit the data as closely as possible) is a little bit different than this
formula (MacDonald, Banville, and Poisot 2020). But for the purpose of this chapter,
figuring out the values of 𝑎 and 𝑏 from empirical data is a very instructive exercise.

In Figure 3.1, we can check that there is a linear relationship between the natural log of
the number of species and the natural log of the number of links. This is not surprising!
If we assume that 𝐿 ≈ 𝑏 × 𝑆𝑎, then we can take the log of both sides, and we get
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log 𝐿 ≈ 𝑎 × log 𝑆 + log 𝑏. This is linear model, and so we can estimate its parameters
using linear regression!

3.3. Gradient descent

Gradient descent is built around a remarkably simple intuition: knowing the formula
that gives rise to our prediction, and the value of the error we made for each point, we
can take the derivative of the error with regards to each parameter, and this tells us how
much this parameter contributed to the error. Because we are taking the derivative, we
can futher know whether to increase, or decrease, the value of the parameter in order
to make a smaller error next time.

In this section, we will use linear regression as an example, because it is the model we
have decided to use when exploring our ecological problem in Section 3.2, and because
it is suitably simple to keep track of everything when writing down the gradient by
hand.

Before we start assembling the different pieces, we need to decide what our model is.
We have settled on a linear model, which will have the form ̂𝑦 = 𝑚 × 𝑥 + 𝑏. The
little hat on ̂𝑦 indicates that this is a prediction. The input of this model is 𝑥, and its
parameters are 𝑚 (the slope) and 𝑏 (the intercept). Using the notation we adopted in
Section 3.2, this would be ̂𝑙 = 𝑎 × 𝑠 + 𝑏, with 𝑙 = log𝐿 and 𝑠 = log𝑆.

3.3.1. Defining the loss function

The loss function is an important concept for anyone attempting to compare predictions
to outcomes: it quantifies how far away an ensemble of predictions is from a benchmark
of known cases. There are many loss functions we can use, and we will indeed use a few
different ones in this book. But for now, we will start with a very general understanding
of what these functions do.

Think of prediction as throwing a series of ten darts on ten different boards. In this
case, we know what the correct outcome is (the center of the board, I assume, although
I can be mistaken since I have only played darts once, and lost). A cost function would
be any mathematical function that compares the position of each dart on each board,
the position of the correct event, and returns a score that informs us about how poorly
our prediction lines up with the reality.

In the above example, you may be tempted to say that we can take the Euclidean distance
of each dart to the center of each board, in order to know, for each point, how far away
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3. Gradient descent

Figure 3.1.: We have assumed that the relationship between 𝐿 and 𝑆 could be repre-
sented by 𝐿 ≈ 𝑏 × 𝑆𝑎, which gave us a reason to take the natural log
of both variables. On this figure, we see that the relationship between the
logs look linear, which means that linear regression has a good chance of
estimating the values of the parameters.
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3.3. Gradient descent

we landed. Because there are several boards, and because we may want to vary the
number of boards while still retaining the ability to compare our performances, we
would then take the average of these measures.

We will note the position of our dart as being ̂𝑦, the position of the center as being 𝑦
(we will call this the ground truth), and the number of attempts 𝑛, and so we can write
our loss function as

1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2 (3.1)

In data science, things often have
multiple names. This is true of
loss functions, and this will be
even more true on other things
later.

This loss function is usually called the MSE (Mean Standard Error), or L2 loss, or the
quadratic loss, because the paths to machine learning terminology are many. This is
a good example of a loss function for regression (and we will discuss loss functions
for classification later in this book). There are alternative loss functions to use for
regression problems in Table 3.1.

Table 3.1.: List of common loss functions for regression problems
Measure Expression Remarks

Mean Squared
Error (MSE, L2)

1
𝑛 ∑𝑛

𝑖=1 (𝑦𝑖 − ̂𝑦𝑖)
2 Large errors are (proportionally) more

penalized because of the squaring
Mean Absolute
Error (MAE, L1)

1
𝑛 ∑𝑛

𝑖=1 ‖𝑦𝑖 − ̂𝑦𝑖‖ Error measured in the units of the
response variable

Root Mean Square
Error (RMSE)

√
MSE Error measured in the units of the

response variable
Mean Bias Error 1

𝑛 ∑𝑛
𝑖=1 (𝑦𝑖 − ̂𝑦𝑖) Errors can cancel out, but this can be

used as a measure of positive/negative
bias

Throughout this chapter, we will use the L2 loss (Equation 3.1), because it has really
nice properties when it comes to taking derivatives, which we will do a lot of. In the
case of a linear model, we can rewrite Equation 3.1 as

𝑓 = 1
𝑛 ∑ (𝑦𝑖 − 𝑚 × 𝑥𝑖 − 𝑏)2 (3.2)

There is an important change in Equation 3.2: we have replaced the prediction ̂𝑦𝑖 with
a term that is a function of the predictor 𝑥𝑖 and the model parameters: this means that
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we can calculate the value of the loss as a function of a pair of values (𝑥𝑖, 𝑦𝑖), and the
model parameters.

3.3.2. Calculating the gradient

With the loss function corresponding to our problem in hands (Equation 3.2), we can
calculate the gradient. Given a function that is scalar-valued (it returns a single value),
taking several variables, that is differentiable, the gradient of this function is a vector-
valued (it returns a vector) function; when evaluated at a specific point, this vectors
indicates both the direction and the rate of fastest increase, which is to say the direction
in which the function increases away from the point, and how fast it moves.

We can re-state this definition using the terms of the problem we want to solve. At a
point 𝑝 = [𝑚 𝑏]⊤, the gradient ∇𝑓 of 𝑓 is given by:

∇𝑓 (𝑝) = [
𝜕𝑓
𝜕𝑚(𝑝)
𝜕𝑓
𝜕𝑏 (𝑝)] . (3.3)

This indicates how changes in 𝑚 and 𝑏 will increase the error. In order to have a more
explicit formulation, all we have to do is figure out an expression for both of the partial
derivatives. In practice, we can let auto-differentiation software calculate the gradient
for us (Innes 2018); these packages are now advanced enough that they can take the
gradient of code directly.

Solving (𝜕𝑓/𝜕𝑚)(𝑝) and (𝜕𝑓/𝜕𝑐)(𝑝) is easy enough:

∇𝑓 (𝑝) = [− 2
𝑛 ∑ [𝑥𝑖 × (𝑦𝑖 − 𝑚 × 𝑥𝑖 − 𝑏)]
− 2

𝑛 ∑ (𝑦𝑖 − 𝑚 × 𝑥𝑖 − 𝑏) ] . (3.4)

Note that both of these partial derivatives have a term in 2𝑛−1. Getting rid of the 2 in
front is very straightforward! We can modify Equation 3.2 to divide by 2𝑛 instead of
𝑛. This modified loss function retains the important characteristics: it increases when
the prediction gets worse, and it allows comparing the loss with different numbers of
points. As with many steps in the model training process, it is important to think about
why we are doing certain things, as this can enable us to make some slight changes to
facilitate the analysis.

With the gradient written down in Equation 3.4, we can now think about what it means
to descend the gradient.
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3.3.3. Descending the gradient

Recall from Section 3.3.2 that the gradient measures how far we increase the function
of which we are taking the gradient. Therefore, it measures how much each parameter
contributes to the loss value. Our working definition for a trained model is “one that
has little loss”, and so in an ideal world, we could find a point 𝑝 for which the gradient
is as small as feasible.

Because the gradient measures how far away we increase error, and intuitive way to use
it is to take steps in the opposite direction. In other words, we can update the value of
our parameters using 𝑝 ∶= 𝑝 − ∇𝑓(𝑝), meaning that we subtract from the parameter
values their contribution to the overall error in the predictions.

But, as we will discuss further in Section 3.3.4, there is such a thing as “too much
learning”. For this reason, we will usually not move the entire way, and introduce a
term to regulate how much of the way we actually want to descend the gradient. Our
actual scheme to update the parameters is

𝑝 ∶= 𝑝 − 𝜂 × ∇𝑓(𝑝) . (3.5)

This formula can be iterated: with each successive iteration, it will get us closer to
the optimal value of 𝑝, which is to say the combination of 𝑚 and 𝑏 that minimizes the
loss.

3.3.4. A note on the learning rate

The error we can make on the first iteration will depend on the value of our initial pick
of parameters. If we are way off, especially if we did not re-scale our predictors and
responses, this error can get very large. And if we make a very large error, we will have
a very large gradient, and we will end up making very big steps when we update the
parameter values. There is a real risk to end up over-compensating, and correcting the
parameters too much.

In order to protect against this, in reality, we update the gradient only a little, where
the value of “a little” is determined by an hyper-parameter called the learning rate,
which we noted 𝜂. This value will be very small (much less than one). Picking the
correct learning rate is not simply a way to ensure that we get correct results (though
that is always a nice bonus), but can be a way to ensure that we get results at all. The
representation of numbers in a computer’s memory is tricky, and it is possible to create
an overflow: a number so large it does not fit within 64 (or 32, or 16, or however many
we are using) bits of memory.
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The conservative solution of using the smallest possible learning rate is not really ef-
fective, either. If we almost do not update our parameters at every epoch, then we will
take almost forever to converge on the correct parameters. Figuring out the learning
rate is an example of hyper-parameter tuning, which we will get back to later in this
book.

3.4. Application: how many links are in a food web?

We will not get back to the problem exposed in Figure 3.1, and use gradient descent to
fit the parameters of the model defined as ̂𝑦 ≈ 𝛽0 + 𝛽1 × 𝑥, where, using the notation
introduced in Section 3.2, ̂𝑦 is the natural log of the number of interactions (what we
want to predict), 𝑥 is the natural log of the species richness (our predictor), and 𝛽0 and
𝛽1 are the parameters of the model.

3.4.1. The things we won’t do

At this point, we could decide that it is a good idea to transform our predictor and our
response, for example using the z-score. But this is not really required here; we know
that our model will give results that make sense in the units of species and interactions
(after dealing with the natural log, of course). In addition, as we will see in Section 6.2,
applying a transformation to the data too soon can be a dangerous thing. We will have
to live with raw features for a few more chapters.

In order to get a sense of the performance of our model, we will remove some of the
data, meaning that the model will not learn on these data points. We will get back
to this practice (cross-validation) in a lot more details in Chapter 4, but for now it is
enough to say that we hide 20% of the dataset, and we will use them to evaluate how
good the model is as it trains. The point of this chapter is not to think too deeply about
cross-validation, but simply to develop intuitions about the way a machine learns.

3.4.2. Starting the learning process

In order to start the gradient descent process, we need to decide on an initial value of the
parameters. There are many ways to do it. We could work our way from our knowledge
of the system; for example 𝑏 < 1 and 𝑎 = 2 would fit relatively well with early results
in the food web literature. Or we could draw a pair of values (𝑎, 𝑏) at random. Looking
at Figure 3.1, it is clear that our problem is remarkably simple, and so presumably either
solution would work.
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Table 3.2.: This table shows the change in the model, as measured by the loss and by the
estimates of the parameters, after an increasing amount of training epochs.
The loss drops sharply in the first 500 iterations, but even after 20000 itera-
tions, there are still some changes in the values of the parameters.

Step Loss (training) Loss (testing) β� β�

1 3.92114 3.18785 0.4 0.2
10 2.99934 2.3914 0.487395 0.226696
30 1.72775 1.31211 0.640263 0.271814

100 0.536207 0.373075 0.907004 0.337644
300 0.392477 0.308264 1.03855 0.311011

1000 0.326848 0.253939 1.11195 0.110083
3000 0.225623 0.167897 1.25704 -0.311373

10000 0.164974 0.119597 1.4487 -0.868105
20000 0.162808 0.118899 1.48864 -0.984121

3.4.3. Stopping the learning process

The gradient descent algorithm is entirely contained in Equation 3.5 , and so we only
need to iterate several times to optimize the parameters. How long we need to run the
algorithm for depends on a variety of factors, including our learning rate (slow learning
requires more time!), our constraints in terms of computing time, but also how good
we need to model to be.

The number of iterations over
which we train the model is
usually called the number of
epochs, and is an hyper-parameter
of the model.

One usual approach is to decide on a number of iterations (we need to start somewhere),
and to check how rapidly the model seems to settle on a series of parameters. But more
than this, we also need to ensure that our model is not learning too much from the data.
This would result in over-fitting, in which the models gets better on the data we used to
train it, and worse on the data we kept hidden from the training! In Table 3.2, we present
the RMSE loss for the training and testing datasets, as well as the current estimates of
the values of the parameters of the linear model.

In order to protect against over-fitting, it is common to add a check to the training loop,
to say that after a minimum number of iterations has been done, we stop the training
when the loss on the testing data starts increasing. In order to protect against very long
training steps, it is also common to set a tolerance (absolute or relative) under which we
decide that improvements to the loss are not meaningful, and which serves as a stopping
criterion for the training.
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Figure 3.2.: This figures shows the change in the loss for the training and testing dataset.
As the two curves converge on low values at the same rate, this suggests
that the model is not over-fitting, and is therefore suitable for use.

3.4.4. Detecting over-fitting

As we mentioned in the previous section, one risk with training that runs for too long
is to start seeing over-fitting. The usual diagnosis for over-fitting is an increase in the
testing loss, which is to say, in the loss measured on the data that were not used for
training. In Figure 3.2, we can see that the RMSE loss decreases at the same rate on
both datasets, which indicates that the model is learning from the data, but not to a
point where its ability to generalize suffers.

Underfitting is also a possible
scenario, where the model is not

learning from the data, and can be
detected by seeing the loss

measures remain high or even
increase.

We are producing the loss over time figure after the training, as it is good practice – but
as we mentioned in the previous section, it is very common to have the training code
look at the dynamics of these two values in order to decide whether to stop the training
early.

Before moving forward, let’s look at Figure 3.2 a little more closely. In the first steps,
the loss decreases very rapidly – this is because we started from a value of � that is,
presumably, far away from the optimum, and therefore the gradient is really strong.
Despite the low learning rate, we are making long steps in the space of parameters.
After this initial rapid increase, the loss decreases much more slowly. This, counter-
intuitively, indicates that we are getting closer to the optimum! At the exact point where
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Figure 3.3.: This figure shows the change in the parameters values over time. Note that
the change is very large initially, because we make large steps when the
gradient is strong. The rate of change gets much lower as we get nearer to
the “correct” value.

𝛽0 and 𝛽1 optimally describe our dataset, the gradient vanishes, and our system would
stop moving. And as we get closer and closer to this point, we are slowing down. In the
next section, we will see how the change in loss over times ties into the changes with
the optimal parameter values.

3.4.5. Visualizing the learning process

From Figure 3.3, we can see the change in 𝛽0 and 𝛽1, as well as the movement of the
current best estimate of the parameters (right panel). The sharp decrease in loss early
in the training is specifically associated to a rapid change in the value of 𝛽0. Further
note that the change in parameters values is not monotonous! The value of 𝛽1 initially
increases, but when 𝛽0 gets closer to the optimum, the gradient indicates that we have
been moving 𝛽1 in the “wrong” direction.

This is what gives rise to the “elbow” shape in the right panel of Figure 3.3. Remember
that the gradient descent algorithm, in its simple formulation, assumes that we can never
climb back up, i.e. we never accept a costly move. The trajectory of the parameters
therefore represents the path that brings them to the lowest point they can reach without
having to temporarily recommend a worse solution.

But how good is the solution we have reached?
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3.4.6. Outcome of the model

We could read the performance of the model using the data in Figure 3.2, but what we
really care about is the model’s ability to tell us something about the data we initially
gave it. This is presented in Figure 3.4. As we can see, the model is doing a rather
good job at capturing the relationship between the number of species and the number
of interactions.

We will have a far more nuanced discussion of “what is this model good for?” in Chap-
ter 4, but for now, we can make a decision about this model: it provides a good approxi-
mation of the relationship between the species richness, and the number of interactions,
in a food web.

3.5. A note on regularization

One delicate issue that we have avoided in this chapter is the absolute value of the
parameters. In other words, we didn’t really care about how large the model parameters
would be, only the quality of the fit. This is (generally) safe to do in a model with a
single parameter. But what if we had many different terms? What if, for example, we
had a linear model of the form ̂𝑦 ≈ 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2? What if our model was of the
form ̂𝑦 ≈ 𝛽0 + 𝛽1𝑥 + ⋯ + 𝛽𝑛𝑥𝑛? What if 𝑛 started to get very large compared to the
number of data points?

In this situation, we would very likely see overfitting, wherein the model would use the
polynomial terms we provided to capture more and more noise in the data. This would
be a dangerous situation, as the model will lose its ability to work on unknown data!

To prevent this situation, we may need to use regularization. Thanfkully, regularization
is a relatively simple process. In Equation 3.4, the function 𝑓(𝑝) we used to measure
the gradient was the loss function directly. In regularization, we use a slight variation
on this, where

𝑓(𝑝) = loss + 𝜆 × 𝑔(𝛽) ,

where 𝜆 is an hyper-parameter giving the strength of the regularization, and 𝑔(𝛽) is a
function to calculate the total penalty of a set of parameters.

When using 𝐿1 regularization (LASSO regression), 𝑔(𝛽) = ∑ |𝛽|, and when using
𝐿2 regularization (ridge regression), 𝑔(𝛽) = ∑ 𝛽2. When this gets larger, which
happens when the absolute value of the parameters increases, the model is penalized.
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3.5. A note on regularization

Figure 3.4.: Overview of the fitted model. The residuals (top panel) are mostly centered
around 0, which suggests little bias towards over/under predicting interac-
tions. The red line (based on the optimal coefficients) goes through the
points, and indicates a rather good fit of the model.
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Note that if 𝜆 = 0, we are back to the initial formulation of the gradient, where the
parameters have no direct effect on the cost.

3.6. Conclusion

In this chapter, we have used a dataset of species richness and number of interactions
to start exploring the practice of machine learning. We defined a model (a linear regres-
sion), and based about assumptions about how to get closer to ideal parameters, we used
the technique of gradient descent to estimate the best possible relationship between 𝑆
and 𝐿. In order to provide a fair evaluation of the performance of this model, we kept
a part of the dataset hidden from it while training. In Chapter 4, we will explore this
last point in great depth, by introducing the concept of cross-validation, testing set, and
performance evaluation.
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4. Cross-validation

In Chapter 2, we were very lucky. Because we applied an unsupervised method, we
didn’t really have a target to compare to the output. Whatever classification we got, we
had to live with it. It was incredibly freeing. Sadly, in most applications, we will have
to compare our predictions to data, and data are incredibly vexatious. In this chapter,
we will develop intuitions on the notions of training, testing, and validation.

In a sense, we started thinking about these concepts in Chapter 3; specifically, we came
up with a way to optimize the parameters of our model (i.e. of training our model)
based on a series of empirical observations, and a criteria for what a “good fit” is. We
further appraised the performance of our model by measuring the loss (our measure
of how good the fit is) on a dataset that was not accessible during training, which we
called the testing dataset. One issue with our approach in Chapter 3 was that we had to
set aside one out of five observation for testing; in this chapter, we will explore more
advanced techniques to perform cross-validation.

4.1. How can we split a dataset?

There is a much more important question to ask first: why do we split a dataset? In
a sense, answering this question echoes the discussion we started in Section 3.4.4, be-
cause the purpose of splitting a dataset is to ensure we can train and evaluate it properly,
in order to deliver the best possible model.

When a model is trained, it has learned from the data, we have tuned its hyper-
parameters to ensure that it learned with the best possible conditions, and we have
applied a measure of performance after the entire process is complete, to communicate
how well we expect our model to work. These three tasks require three different
datasets, and this is the purpose of splitting our data into groups.

One of the issues when reading about splitting data is that the terminology can be
muddy. For example, what constitutes a testing and validation set can largely be a
matter of perspective. In many instances, testing and validation are used interchange-
ably, especially when there is a single model involved. Nevertheless, it helps to settle
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Figure 4.1.: Overview of the cross-validation process, illustrating two splits using the
k-folds strategy (Section 4.3.4). The testing dataset is not used until we
are ready to evaluate the predicted performance of the model after we have
trained the best possible model.

on a few guidelines here, before going into the details of what each dataset constitutes
and how to assemble it.

The training instances are examples that are given to the model during the training
process. This dataset has the least ambiguous definition. The training data is defined
by subtraction, in a sense, as whatever is left of the original data after we set aside
testing and validation sets.

The testing instances are used at the end of the process, to measure the performance of a
trained model with tuned hyper-parameters. If the training data are the lectures, testing
data are the final exam: we can measure the performance of the model on this dataset
and report it as the model performance we can expect when applying the model to new
data. There is a very important, chapter-long, caveat about this last point, related to the
potential of information leak between datasets, which is covered in Section 6.2.

The validation data are used in-between, as part of the training process. They are (pos-
sibly) a subset of the training data that we use internally to check the performance of
the model, often in order to tune its hyper-parameters, or as a way to report on the
over-fitting of the model during the training process.

The difference between testing and validation is largely a difference of intent. When we
want to provide an a posteriori assessment of the model performance, the dataset we
use to determine this performance is a testing dataset. When we want to optimize some
aspect of the model, the data we use for this are the validation data. With this high-level

44



4.1. How can we split a dataset?

perspective in mind, let’s look at each of these datasets in turn. The differences between
these three datasets are summarized in Table 4.1.

Table 4.1.: Overview of the three datasets used for training and cross-validation. In-
formation in the “Data used for training” column refer to the data that have
been used to train the model when calculating its performance.

Dataset Trains Purpose
Data used for
training

Training yes train model
Validation validate during training training data only
Testing estimates of future

performance
all except testing

4.1.1. Training

In data science (in applied machine learning in particular), we do not fit models. We
train them. This is an important difference: training is an iterative process, that we can
repeat, optimize, and tweak. The outcome of training and the outcome of fitting are
essentially the same (a model that is parameterized to work as well as possible on a
given dataset), but it is good practice to adopt the language of a field, and the language
of data science emphasizes the different practices in model training.

Training, to provide a general definition, is the action of modifying the parameters of a
model, based on knowledge of the data, and the error that results from using the current
parameter values. In Chapter 3, for example, we saw how to train a linear model using
the technique of gradient descent, based on a specific dataset, with a learning rate and
loss function we picked based on trial and error. Our focus in this chapter is not on the
methods we use for training, but on the data that are required to train a model.

Training a model is a process akin to rote learning: we will present the same input, and
the same expected responses, many times over, and we will find ways for the error on
each response to decrease (this is usually achieved by minimizing the loss function).

In order to initiate this process, we need an untrained model. Untrained, in this context,
refers to a model that has not been trained on the specific problem we are addressing; the
model may have been trained on a different problem (for example, we want to predict
the distribution of a species based on a GLM trained on a phylogenetically related
species). It is important to note that by “training the model”, what we really mean
is “change the structure of the parameters until the output looks right”. For example,
assuming a simple linear model like 𝑐(𝑋) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2, training this model
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would lead to changes in the values of 𝛽, but not to the consideration of a new model
𝑐(𝑋) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋1𝑋2. Comparing models is (often) the point of
validation, which we will address later on.

4.1.2. Validating

The easiest way to think about the validation dataset is by thinking about what it is not
used for: training the model (this is the training set), and giving a final overview of
the model expected performance (this is the testing set). The validation set is used for
everything else (model selection, cross-validation, hyper-parameters tuning), albeit in
a specific way. With the training set, we communicate the predictors and the labels
to the model, and update the weights of the model in response. With the validation
set, we communicate the predictors and the labels to the model, but we do not update
the weights in response. All we care about during validation is the performance of the
model on a problem it has not yet encountered during this specific round of training. If
the training set is like attending a lecture, the validation set is formative feedback.

Of course, one issue with the creation of a validation set is that it needs to resemble the
problem the model will have to solve in practice. We will discuss this more in depth
in the following sections, but it is worth thinking about an example. Assume a model
that classifies a picture as having either a black bear, or no black bear. Now, we can
train this model using, for example, images from 10 camera traps that are situated in a
forest. And we might want to validate with a camera trap that is in a zoo. In one of the
enclosures. The one with a bear. A polar one.

The issue with this dataset as a validation dataset is that is does not matches the problem
we try to solve in many different ways. First, we will have an excess of images with
bears compared to our problem environment. Camera traps can have a large number of
spurious activation, resulting in images without animals in them (Newey et al. 2015).
Second, the data will come from very different environments (forest v. zoo). Finally,
we are attempting to validate on something that is an entirely different species of bear.
This sounds like an egregious case (it is), but it is easy to commit this type of mistake
when our data get more complex than black bear, polar bear, no bear.

Validation is, in particular, very difficult when the dataset we use for training has ex-
treme events (Bellocchi et al. 2010). Similarly, the efficiency of validation datasets
can be limited if it reflects the same biases as the training data (Martinez-Meyer 2005).
Recall that this validation dataset is used to decide on the ideal conditions to train the
final model before testing (and eventually, deployment); it is, therefore, extremely im-
portant to get it right. A large number of techniques to split data (Søgaard et al. 2021;
Goot 2021) use heuristics to minimize the risk of picking the wrong validation data.
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4.1.3. Testing

The testing dataset is special. The model has never touched it. Not during training, and
not for validation. For this reason, we can give it a very unique status: it is an analogue
to data that are newly collected, and ready to be passed through the trained model in
order to make a prediction.

The only difference between the testing set and actual new data is that, for the testing set,
we know the labels. In other words, we can compare the model output to these labels,
and this gives us an estimate of the model performance on future data. Assuming that
this data selection was representative of the real data we will use for our model once it
is trained, the performance on the validation set should be a good baseline for what to
expect in production.

But this requires a trained model, and we sort of glossed over this step.

In order to come up with a trained model, it would be a strange idea not to use the
validation data – they are, after all, holding information about the data we want to
model! Once we have evaluated our model on the validation set, we can start the last
round of training to produce the final model. We do this by training the model using
everything except the testing data. This is an appropriate thing to do: because we
have evaluated the model on the validation data, and assuming that it has a correct
performance, we can expect that retraining the model on the validation data will not
change the performance of the model.

4.2. The problem: cherry blossom phenology

The cherry blossom tree (Prunus) is renowned for its impressive bloom, which happens
from March to April. The blooming, and associated festivals, are of particular cultural
significance (Moriuchi and Basil 2019), and is therefore a cultural ecosystem service
(Kosanic and Petzold 2020). Climate change has a demonstrable effect on the date of
first bloom on Prunus species in Japan (Primack, Higuchi, and Miller-Rushing 2009),
which can affect the sustainability of cherry blossom festivals in the short term (Sakurai
et al. 2011).

Long-term time series of the date of first bloom in Japan reveal that in the last decades,
cherry blossom blooms earlier, which has been linked to, possibly, climate change and
urbanization. Prunus species respond to environmental cues at the local level for their
flowering (Mimet et al. 2009; Ohashi et al. 2011). The suspected causal mechanism is
as follows: both global warming and urbanization lead to higher temperatures, which
means a faster accumulation of degree days over the growing season, leading to an
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Figure 4.2.: The raw data show a negative relationship between the temperature in
March, and the bloom time. This suggests that when the trees have accumu-
lated enough temperature, they can bloom early. In a context of warming,
we should therefore see earlier blooms with rising temperatures.

earlier bloom (Shi et al. 2017). Indeed, the raw data presented in Figure 4.2 show
that trees bloom early when the temperatures are higher; the data for phenology have
been collected by Aono and Kazui (2008), and the temperature reconstructions are from
Aono and Saito (2009).

With these data in hand (day of year with the first bloom, and smoothed reconstructed
temperature in March), we can start thinking about this hypothesis. But by contrast
with our simple strategy in Chapter 3, this time, we will split our dataset into training,
validation, and testing sets, as we discussed in the previous section. Yet there are many
ways to split a dataset, and therefore before starting the analysis, we will have a look at
a few of them.

4.3. Strategies to split data

Before seeing examples of strategies for cross-validation, it is important to consider the
high-level perspective of the way we will perform the entire training sequence. First,
we need to keep a testing dataset. Depending on the problem, it may be feasible or
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desirable to use an external testing dataset (Homeyer et al. 2022). In problems for
which the volume of data is limited (the 99.99% of biodiversity applications that do
not involve metagenomics of remote sensing), this is almost impossible, and therefore
we need to resort to removing a proportion of the data. It means that collected data
will never be used for training, which is not ideal, but what we gain in return is a fairer
appraisal of the performance of the model, which is a really advantageous trade-off.
When the testing data are removed, we can start splitting the rest of the data in training
and validation sets. This can involve two broad categories of families: exhaustive splits
(all data are used for training and evaluation), and non-exhaustive splits (the opposite;
for once, the terminology makes sense!).

4.3.1. Holdout

The holdout method is what we used in Chapter 3, in which we randomly selected some
observations to be part of the validation data (which was, in practice, a testing dataset in
this example), and kept the rest to serve as the training data. Holdout cross-validation
is possibly the simplest technique, but it suffers from a few drawbacks.

The model is only trained for one split of the data, and similarly only evaluated for one
split of the data. There is, therefore, a chance to sample a particularly bad combination
of the data that lead to erroneous results. Attempts to quantify the importance of the
predictors are likely to give particularly unstable results, as the noise introduced by
picking a single random subset will not be smoothed out by multiple attempts.

In addition, as Hawkins, Basak, and Mills (2003) point out, holdout validation is par-
ticularly wasteful in data-limited settings, where there are fewer than hundreds of ob-
servations. The reason is that the holdout dataset will never contribute to training, and
assuming the data are split 80/20, one out of five observations will not contribute to the
model. Other cross-validation schemes presented in this section will allow observations
to be used both for training and validation.

4.3.2. Leave-p-out

In leave-p-out cross-validation (LpOCV), starting from a dataset on 𝑛 observations,
we pick 𝑝 at random to serve as validation data, and 𝑛 − 𝑝 to serve as the training
dataset. This process is then repeated exhaustively, which is to say we split the dataset
in every possible way that gives 𝑝 and 𝑛 − 𝑝 observations, for a set value of 𝑝. The
model is then trained on the 𝑛 − 𝑝 observations, and validated on the 𝑝 observations
for validation, and the performance (or loss) is averaged to give the model performance
before testing.
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Celisse (2014) points out that 𝑝 has to be large enough (relative to the sample size 𝑛)
to overcome the propensity of the model to overfit on a small training dataset. One
issue with LpOCV is that the number of combinations is potentially very large. It is,
in fact, given by the binomial coefficient (𝑛

𝑝), which gets unreasonably large even for
small datasets. For example, running LpOCV on 𝑛 = 150 observations, leaving out
𝑝 = 10 for validation every time, would require to train the model about 1015 times.
Assuming we can train the model in 10−3 seconds, the entire process would require
370 centuries.

Oh well.

4.3.3. Leave-one-out

The leave-one-out cross-validation (LOOCV) is a special case of LpOCV with 𝑝 = 1.
Note that it is a lot faster to run than LpOCV, because (𝑛

1) = 𝑛, and so the valida-
tion step runs in 𝒪(𝑛) (LpOCV runs in 𝒪(𝑛!)). LOOCV is also an exhaustive cross-
validation technique, as every possible way to split the dataset will be used for training
and evaluation.

4.3.4. k-fold

One of the most frequent cross-validation scheme is k-fold cross-validation. Under this
approach, the dataset is split into 𝑘 equal parts (and so when 𝑘 = 𝑛, this is also equiva-
lent to LOOCV). Like with LOOCV, one desirable property of k-fold cross-validation
is that each observation is used exactly one time to evaluate the model , and exactly
𝑘 − 1 times to train it.

But by contrast with the holdout validation approach, all observations are used to train
the model.

When the data have some specific structure, it can be a good thing to manipulate the
splits in order to maintain this structure. For example, Bergmeir and Benítez (2012)
use temporal blocks for validation of time series, and retain the last part of the series
for testing (we illustrate this in Figure 4.3). For spatial data, Hijmans (2012) suggests
the use of a null model based on distance to training sites to decide on how to split
the data; Valavi et al. (2018) have designed specific k-fold cross-validation schemes
for species distribution models. These approaches all belong to the family of stratified
k-fold cross-validation (Zeng and Martinez 2000).
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Figure 4.3.: An illustration of a series of folds on a timeseries. The grey data are used
for training, the green data for validation, and the purple data are kept for
testing. Note that in this context, we sometimes use the future to validate on
the past (look at the first fold!), but this is acceptable for reasons explained
in the text.
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The appropriate value of 𝑘 is often an unknown. It is common to use 𝑘 = 10 as a
starting point (tenfold cross-validation), but other values are justifiable based on data
volume, or complexity of the model training, to name a few.

4.3.5. Monte-Carlo

One limitation of k-fold cross-validation is that the number of splits is limited by the
amount of observations, especially if we want to ensure that there are enough samples in
the validation data. To compensate for this, Monte-Carlo cross-validation is essentially
the application (and averaging) of holdout validation an arbitrary number of times. Fur-
thermore, the training and validation datasets can be constructed in order to account for
specific constraints in the dataset, giving more flexibility than k-fold cross-validation
(Roberts et al. 2017). When the (computational) cost of training the model is high, and
the dataset has specific structural constraints, Monte-Carlo cross-validation is a good
way to generate data for hyperparameters tuning.

One issue with Monte-Carlo cross-validation is that we lose the guarantee that every ob-
servation will be used for training at least once (and similarly for validation). Trivially,
this becomes less of an issue when we increase the number of replications, but then
this suffers from the same issues as LpOCV, namely the unreasonable computational
requirements.

4.4. Application: when do cherry blossom bloom?

The model we will train for this section is really simple: bloom day = 𝑚 ×
temperature + 𝑏. This is a linear model, and one with a nice, direct biological inter-
pretation: the average (baseline) day of bloom is 𝑏, and each degree of temperature
expected in March adds 𝑚 days to the bloom date. At this point, we might start
thinking about the distribution of the response, and what type of GLM we should used,
but no. Not today. Today, we want to iterate quickly, and so we will start with a model
that is exactly as simple as it needs to be: this is, in our case, linear regression.

At this point, we may be tempted to think a little more deeply about the variables and
the structure of the model, to express the bloom day as a departure from the expected
value, and similarly with the temperature, using for example the z-score. This is a
transformation we will apply starting from Chapter 5, but in order to apply it properly,
we need to consider some elements that will be introduced in Section 6.2. For this
reason, we will not apply any transformation to the data yet; feel free to revisit this
exercise after reading through Section 6.2.
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Figure 4.4.: Visualisation of the model performance for three loss functions (MA,
RMSE, MBE, as defined in Table 3.1). The colors are the same as in Fig-
ure 4.3, i.e. grey for the training data, green for the validation data, and
purple for the testing data.

This approach (start from a model that is suspiciously simple) is a good thing, for more
than a few reasons. First, it gives us a baseline to compare more complicated models
against. Second, it means that we do not need to focus on the complexity of the code
(and the model) when building a pipeline for the analysis. Finally, and most importantly,
it gives us a result very rapidly, which enables a loop of iterative model refinement on
a very short timescale. Additionally, at least for this example, the simple models often
work well enough to support a discussion of the model and training process.

4.4.1. Performance evaluation

We can visualize the results of our model training and assessment process. These re-
sults are presented in Figure 4.4 (as well as in Table 4.2, if you want to see the standard
deviation across all splits), and follow the same color-coding convention we have used
so far. All three loss measures presented here express their loss in the units of the re-
sponse variable, which in this case is the day of the year where the bloom was recorded.
These results show that our trained model achieves a loss of the order of a day or two
in the testing data, which sounds really good!

53



4. Cross-validation

Table 4.2.: TODO

Dataset Measure Loss (avg.) Loss (std. dev.)

Testing MAE 1.696
Training MAE 2.2397 0.0482364

Validation MAE 2.26331 0.421513
Testing MBE 0.0971036

Training MBE 9.8278e-15 1.15597e-14
Validation MBE 0.000419595 0.910229

Testing MSE 4.49123
Training MSE 8.04855 0.32487

Validation MSE 8.24897 2.93094
Testing RMSE 2.11925

Training RMSE 2.83648 0.0570941
Validation RMSE 2.82514 0.545232

Yet it is important to contextualize these results. What does it means for our predic-
tion to be correct plus or minus two days? There are at least two important points to
consider.

First, what are we predicting? Our response variable is not really the day of the bloom,
but is rather a smoothed average looking back some years, and looking ahead some
years too. For this reason, we are removing a lot of the variability in the underlying
time series. This is not necessarily a bad thing, especially if we are looking for a trend
at a large temporal scale, but it means that we should not interpret our results at a scale
lower than the duration of the window we use for averaging.

Second, what difference does a day make? Figure 4.2 shows that most of the days of
bloom happen between day-of-year 100 and day-of-year 110. Recall that the MAE is
measured by taking the average absolute error – a mistake of 24 hours is 10% of this
interval! This is an example of how thinking about the units of the loss function we use
for model evaluation can help us contextualize the predictions, and in particular how
actionable they can be.

4.4.2. Model predictions

The predictions of our model are presented in Figure 4.5; these are the predictions of
the final model, that is, the model that we trained on everything except the testing data,
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Figure 4.5.: Overview of the fit of the final model (trained on all the training examples),
visualized as the time series. Note that the year was not used as a variable in
the model. The purple part of the prediction corresponds to the prediction
of the model for the testing data, which are zoomed-in on in Figure 4.6.
Although the model captures the cycles reasonably well, it tends to smooth
out a lot of extreme events.

and for which we can get the performance by looking at Figure 4.4.

The question we now need to answer is: is our model doing a good job? We can start
thinking about this question in a very qualitative way: yes, it does a goob job at drawing
a line that, through time, goes right through the original data more often that it doesn’t.
As far as validation goes, it maybe underestimates the drop in the response variable (it
predicts the bloom a little later), but maybe there are long-term effects, expressed over
the lifetime of the tree (the first bloom usually takes places after 6 or 7 growth seasons),
that we do not account for.

Think about the structure of linear
models. Can we use information
about the previous years in our
model? Would there be a risk
associated to adding more
parameters?

Our model tends to smooth out some of the variation; it does not predict bloom dates
before day of year 100, or after day of year 108, although they do happen. This may not
be a trivial under-prediction: some of these cycles leading to very early/late bloom can
take place over a century, meaning that our model could be consistently wrong (which
is to say, wrong with the same bias) for dozens of years in a row.
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4.4.3. Is our model good, then?

The answer is, it depends. Models are neither good, nor bad. They are either fit, or
unfit, for a specific purpose.

If the purpose is to decide when to schedule a one-day trip to see the cherry blossom
bloom, our model is not really fit – looking at the predictions, it gets within a day of
the date of bloom (but oh, by the way, this is an average over almost a decade!) about
15% of the time, which jumps up to almost 30% if you accept a two-days window of
error.

If the purpose is to look at long-time trends in the date of bloom, then our model actually
works rather well. It does under-estimate the amplitude of the cycles, but not by a large
amount. In fact, we could probably stretch the predictions a little, applying a little
correction factor, and have a far more interesting model.

We will often be confronted to this question when working with prediction. There is
not really a criteria for “good”, only a series of compromises and judgment calls about
“good enough”. This is important. It reinforces the imperative of keeping the practice
of data science connected to the domain knowledge, as ultimately, a domain expert will
have to settle on whether to use a model or not.

4.5. Conclusion

In this chapter, we trained a linear regression model to predict the day of bloom of
cherry blossom trees based on the predicted temperature in March. Although the model
makes a reasonable error (of the order of a few days), a deeper investigation of the
amplitude of this error compared to the amplitude of the response variable, and of the
comparison of extreme values in the prediction and in the data, led us to a more cautious
view about the usefulness of this model. In practice, if we really wanted to solve this
problem, this is the point where we would either add variables, or try another regression
algorithm, or both.
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5. Supervised classification

In the previous chapters, we have focused on efforts on regression models, which is to
say models that predict a continuous response. In this chapter, we will introduce the
notion of classification, which is the prediction of a discrete variable representing a
category. There are a lot of topics we need to cover before we can confidently come
up with a model for classification, and so this chapter is part of a series. We will
first introduce the idea of classification; in ?@sec-variable-selection, we will explore
techniques to fine-tune the set of variables we use for prediction; in Chapter 7, we will
think about predictions of classes as probabilities, and generalize these ideas and think
about learning curves; finally, in Chapter 8, we will think about variables a lot more,
and introduce elements of model interpretability.

5.1. The problem: distribution of an endemic species

Throughout these chapters, we will be working on a single problem, which is to predict
the distribution of the Corsican nuthatch, Sitta whiteheadi. The Corsican nuthatch is
endemic to Corsica, and its range has been steadily shrinking over time due to loss of
habitat through human activity, including fire, leading to it being classified as “vulner-
able to extinction” by the International Union for the Conservation of Nature. Barbet-
Massin and Jiguet (2011) nevertheless show that the future of this species is not nec-
essarily all gloom and doom, as climate change is not expected to massively affect its
distribution.

Species Distribution Modeling (SDM; Elith and Leathwick (2009)), also known as Eco-
logical Niche Modeling (ENM), is an excellent instance of ecologists doing applied
machine learning already, as Beery et al. (2021) rightfully pointed out. In fact, the
question of fitness-for-purpose, which we discussed in previous chapters (for example
in Section 4.4.3), has been covered in the SDM literature (Guillera-Arroita et al. 2015).
In these chapters, we will fully embrace this idea, and look at the problem of predicting
where species can be as a data science problem. In the next chapters, we will converge
again on this problem as an ecological one. Being serious our data science practices
when fitting a species distribution model is important: Chollet Ramampiandra et al.
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(2023) make the important point that it is easy to overfit more complex models, at
which point they cease outperforming simple statistical models.

Because this chapter is the first of a series, we will start by building a bare-bones model
on ecological first principles. This is an important step. The rough outline of a model
is often indicative of how difficult the process of training a really good model will be.
But building a good model is an iterative process, and so we will start with a very
simple model and training strategy, and refine it over time. In this chapter, the purpose
is less to have a very good training process; it is to familiarize ourselves with the task
of classification.

We will therefore start with a blanket assumption: the distribution of species is some-
thing we can predict based on temperature and precipitation. We know this to be impor-
tant for plants (Clapham et al. 1935) and animals (Whittaker 1962), to the point where
the relationship between mean temperature and annual precipitation is how we find de-
limitations between biomes. If you need to train a lot of models on a lot of species,
temperature and precipitation are not the worst place to start (Berteaux 2014).

Consider our dataset for a minute. In order to predict the presence of a species, we
need information about where the species has been observed; this we can get from
the Global Biodiversity Information Facility. We need information about where the
species has not been observed; this is usually not directly available, but there are ways
to generate background points that are a good approximation of this (Hanberry, He,
and Palik 2012; Barbet-Massin et al. 2012). All of these data points come in the form
(lat., lon., 𝑦), which give a position in space, as well as 𝑦 = {+, −} (the species is
present or absent!) at this position.

To build a model with temperature and precipitation as inputs, we need to extract the
temperature and precipitation at all of these coordinates. We will use the CHELSA2
dataset (Karger et al. 2017), at a resolution of 30 seconds of arc. WorldClim2 (Fick
and Hijmans 2017) is also appropriate, but is known to have some artifacts.

The predictive task we want to complete is to get a predicted presence or absence ̂𝑦 =
{+, −}, from a vector x⊤ = [temp. precip.]. This specific task is called classification,
and we will now introduce some elements of theory.

5.2. What is classification?

Classification is the prediction of a qualitative response. In Chapter 2, for example, we
predicted the class of a pixel, which is a qualitative variable with levels {1, 2, … , 𝑘}.
This represented an instance of unsupervised learning, as we had no a priori notion of
the correct class of the pixel. When building SDMs, by contrast, we often know where
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species are, and we can simulate “background points”, that represent assumptions about
where the species are not. For this series of chapters, the background points have been
generated by sampling preferentially the pixels that are farther away from known pres-
ences of the species.

When working on {+, −}
outcomes, we are specifically
performing binary classification.
Classification can be applied to
more than two levels.

In short, our response variable has levels {+, −}: the species is there, or it is not – we
will challenge this assumption later in the series of chapters, but for now, this will do.
The case where the species is present is called the positive class, and the case where
it is absent is the negative class. We tend to have really strong assumptions about
classification already. For example, monitoring techniques using environmental DNA
(e.g. Perl et al. 2022) are a classification problem: the species can be present or not,
𝑦 = {+, −}, and the test can be positive of negative ̂𝑦 = {+, −}. We would be happy
in this situation whenever ̂𝑦 = 𝑦, as it means that the test we use has diagnostic value.
This is the essence of classification, and everything that follows is more precise ways
to capture how close a test comes from this ideal scenario.

5.2.1. Separability

A very important feature of the relationship between the features and the classes is
that, broadly speaking, classification is much easier when the classes are separable.
Separability (often linear separability) is achieved when, if looking at some projection
of the data on two dimensions, you can draw a line that separates the classes (a point in
a single dimension, a plane in three dimension, and so on and so forth). For reasons that
will become clear in ?@sec-variableselection-curse, simply adding more predictors
is not necessarily the right thing to do.

In Figure 5.1, we can see the temperature (in degrees) for locations with recorded pres-
ences of Corsican nuthatches, and for locations with assumed absences. These two
classes are not quite linearly separable alongside this single dimension (maybe there
is a different projection of the data that would change this; we will explore one in
?@sec-variable-selection), but there are still some values at which our guess for a
class changes. For example, at a location with a temperature colder than 1°C, pres-
ences are far more likely. For a location with a temperature warmer than 5°C, absences
become overwhelmingly more likely. The locations with a temperature between 0°C
and 5°C can go either way.

5.2.2. The confusion table

Evaluating the performance of a classifier (a classifier is a model that performs classi-
fication) is usually done by looking at its confusion table, which is a contingency table
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Figure 5.1.: This figures show the separability of the presences (orange) and pseudo-
absences (grey) on the temperature and precipitation dimensions.
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of the form

(TP FP
FN TN) . (5.1)

This can be stated as “counting the number of times each pair of (prediction, observation
occurs)”, like so:

(|+̂, +| |+̂, −|
|−̂, +| |−̂, −|) . (5.2)

The four components of the confusion table are the true positives (TP; correct prediction
of +), the true negatives (TN; correct prediction of −), the false positives (FP; incor-
rect prediction of +), and the false negatives (FN; incorrect prediction of −). Quite
intuitively, we would like our classifier to return mostly elements in TP and TN: a good
classifier has most elements on the diagonal, and off-diagonal elements as close to zero
as possible (the proportion of predictions on the diagonal is called the accuracy, and
we will spend Section 5.2.4 discussing why it is not such a great measure).

As there are many different possible measures on this matrix, we will introduce them
as we go. In this section, it it more important to understand how the matrix responds
to two important features of the data and the model: balance and bias.

Balance refers to the proportion of the positive class. Whenever this balance is not equal
to 1/2 (there are as many positives as negative cases), we are performing imbalanced
classification, which comes with additional challenges; few ecological problems are
balanced.

5.2.3. The no-skill classifier

There is a specific hypothetical classifier, called the no-skill classifier, which guesses
classes at random as a function of their proportion. It turns out to have an interesting
confusion matrix! If we note 𝑏 the proportion of positive classes, the no-skill classifier
will guess + with probability 𝑏, and − with probability 1 − 𝑏. Because these are also
the proportion in the data, we can write the adjacency matrix as

( 𝑏2 𝑏(1 − 𝑏)
(1 − 𝑏)𝑏 (1 − 𝑏)2) . (5.3)
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The proportion of elements that are on the diagonal of this matrix is 𝑏2+(1−𝑏)2. When
𝑏 gets lower, this value actually increases: the more difficult a classification problem is,
the more accurate random guesses look like. This has a simple explanation, which we
expand Section 5.2.4 : when most of the cases are negative, if you predict a negative
case often, you will by chance get a very high true negative score. For this reason,
measures of model performance will combine the positions of the confusion table to
avoid some of these artifacts.

An alternative to the no-skill
classifier is the coin-flip classifier,
in which classes have their correct
prevalence 𝑏, but the model picks

at random (i.e. with probability
1/2) within these classes.

Bias refers to the fact that a model can recommend more (or fewer) positive or nega-
tive classes than it should. An extreme example is the zero-rate classifier, which will
always guess the most common class, and which is commonly used as a baseline for
imbalanced classification. A good classifier has high skill (which we can measure by
whether it beats the no-skill classifier for our specific problem) and low bias. In this
chapter, we will explore different measures on the confusion table the inform us about
these aspects of model performance, using the Naive Bayes Classifier.

5.2.4. A note on accuracy

It is tempting to use accuracy to measure how good a classifier is, because it makes
sense: it quantifies how many predictions are correct. But a good accuracy can hide a
very poor performance. Let’s think about an extreme case, in which we want to detect
an event that happens with prevalence 0.05. Out of 100 predictions, the confusion
matrix of this model would be

(0 0
5 95) .

The accuracy of this classifier would be 0.95, which seems extremely high! This is
because prevalence is extremely low, and so most of the predictions are about the neg-
ative class: the model is on average really good, but is completely missing the point
when it comes to making interesting predictions.

In fact, even a classifier that would not be that extreme would be mis-represented if
all we cared about was the accuracy. If we take the case of the no-skill classifier, the
accuracy is given by 𝑏2 + (1 − 𝑏)2, which is an inverted parabola that is maximized for
𝑏 ≈ 0 – a model guessing at random will appear better when the problem we want to
solve gets more difficult.

This is an issue inherent to accuracy: it can tell you that a classifier is bad (when it is
low), but it cannot really tell you when a classifier is good, as no-skill (or worse-than-
no-skill) classifiers can have very high values. It remains informative as an a posteriori
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measure of performance, but only after using reliable measures to ensure that the model
means something.

5.3. The Naive Bayes Classifier

The Naive Bayes Classifier (NBC) is my all-time favorite classifier. It is built on a
very simple intuition, works with almost no data, and more importantly, often provides
an annoyingly good baseline for other, more complex classifiers to meet. That NBC
works at all is counter-intuitive (Hand and Yu 2001). It assumes that all variables are
independent, it works when reducing the data to a simpler distribution, and although
the numerical estimate of the class probability can be somewhat unstable, it generally
gives good predictions. NBC is the data science equivalent of saying “eh, I reckon it’s
probably this class” and somehow getting it right 95% of the case [there are, in fact,
several papers questioning why NBC works so well; see e.g. Kupervasser (2014)].

5.3.1. How the NBC works

In Figure 5.1, what is the most likely class if the temperature is 12°C? We can look at
the density traces on top, and say that because the one for presences is higher, we would
be justified in guessing that the species is present. Of course, this is equivalent to saying
that 𝑃(12∘𝐶|+) > 𝑃(12∘𝐶|−). It would appear that we are looking at the problem
in the wrong way, because we are really interested in 𝑃(+|12∘𝐶), the probability that
the species is present knowing that the temperature is 12°C.

Using Baye’s theorem, we can re-write our goal as

𝑃(+|𝑥) = 𝑃(+)
𝑃(𝑥) 𝑃(𝑥|+) , (5.4)

where 𝑥 is one value of one feature, 𝑃(𝑥) is the probability of this observation (the
evidence, in Bayesian parlance), and 𝑃(+) is the probability of the positive class (in
other words, the prior). So, this is where the “Bayes” part comes from.

But why is NBC naïve?

In Equation 5.4, we have used a single feature 𝑥, but the problem we want to solve uses
a vector of features, x. These features, statisticians will say, will have covariance, and
a joint distribution, and many things that will challenge the simplicity of what we have
written so far. These details, NBC says, are meaningless.
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NBC is naïve because it makes the assumptions that the features are all independent.
This is very important, as it means that 𝑃(+|x) ∝ 𝑃(+) ∏𝑖 𝑃(x𝑖|+) (by the chain
rule). Note that this is not a strict equality, as we need to divide by the evidence. But
the evidence is constant across all classes, and so we do not need to measure it to get
an estimate of the score for a class.

To generalize our notation, the score for a class c𝑗 is 𝑃(c𝑗) ∏𝑖 𝑃(x𝑖|c𝑗). In order to
decide on a class, we apply the following rule:

̂𝑦 = argmax𝑗 𝑃(c𝑗) ∏
𝑖

𝑃(x𝑖|c𝑗) . (5.5)

In other words, whichever class gives the higher score, is what the NBC will recom-
mend for this instance x. In Chapter 7, we will improve upon this model by thinking
about the evidence 𝑃(x), but as you will see, this simple formulation will already prove
frightfully effective.

5.3.2. How the NBC learns

There are two unknown quantities at this point. The first is the value of 𝑃(+) and
𝑃(−). These are priors, and are presumably important to pick correctly. In the spirit
of iterating rapidly on a model, we can use two starting points: either we assume that the
classes have the same probability, or we assume that the representation of the classes
(the balance of the problem) is their prior. More broadly, we do not need to think about
𝑃(−) too much, as it is simply 1−𝑃(+), since the “state” of every single observation
of environmental variables is either + or −.

The most delicate problem is to figure out 𝑃(𝑥|𝑐), the probability of the observation
of the variable when the class is known. There are variants here that will depend on
the type of data that is in 𝑥; as we work with continuous variables, we will rely on
Gaussain NBC. In Gaussian NBC, we will consider that 𝑥 comes from a normal distri-
bution 𝒩(𝜇𝑥,𝑐, 𝜎𝑥,𝑐), and therefore we simply need to evaluate the probability density
function of this distribution at the point 𝑥. Other types of data are handled in the same
way, with the difference that they use a different set of distributions.

Therefore, the learning stage of NBC is extremely quick: we take the mean and standard
deviation of the values, split by predictor and by class, and these are the parameters of
our classifier. By contrast to the linear regression approach we worked with in Chap-
ter 3, the learning phase only involves a single epoch: measuring the mean and standard
deviation.
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5.4. Application: a baseline model of the Corsican nuthatch

In this section, we will have a look at the temperature and precipitation data from Fig-
ure 5.1, and come up with a first version of our classifier.

5.4.1. Training and validation strategy

To evaluate our model, as we discussed in Chapter 4, we will keep a holdout testing
set, that will be composed of 20% of the observations. In this chapter, we will not be
using these data, because in order to use them as a stand-in for future predictions, it is
important that the model only sees them once (this will happen at the end of Chapter 7).
Therefore, for the next chapters, we will limit ourselves to an evaluation of the model
performance based on the average values of the performance measure we picked as the
most informative, calculated on the validation datasets. In this chapter, we will rely on
Monte-Carlo cross validation (MCCV; see Section 4.3.5), using 50 replicates. In the
following chapters, we will revert to using k-folds cross-validation, but using MCCV
here is a good enough starting point.

In order to see how good our model really is, we will also compare its performances to
the no-skill classifier. This is almost never a difficult classifier to outperform, but this
nevertheless provides a good indication of whether our model works at all. In subse-
quent chapters, we will introduce a slightly more domain-specific model to provide a
baseline that would look like an actual model we would like to out-perform.

5.4.2. Performance evaluation of the model

In order to get a sense of the performance of our model, we will need to decide on a
performance measure. This is an important step, as we will use the average value of
this measure on the validation data to decide on the best model before reporting the
expected performance. If we pick a measure that is biased, we will therefore use a
model that is biased. Following Chicco and Jurman (2020) and Jurman, Riccadonna,
and Furlanello (2012), we will use the Matthew’s Correlation Coefficient (MCC) as
the “main” measure to evaluate the performance of a model (we will return to other
alternative measures in Chapter 7).

The MCC is defined as

TP × TN − FP × FN
√(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)

.
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Figure 5.2.: Overview of the scores for the Matthew’s correlation coefficient, as well as
the positive and negative predictive values.

The MCC is a correlation coefficient (specifically, the Pearson product-moment corre-
lation on a contingency table; Powers (2020)), meaning that it returns values in [−1, 1].
A negative value indicates perfectly wrong predictions, a value of 0 indicates no-skill,
and a value of 1 indicates perfect predictions. Therefore, if we pick the model with the
highest MCC, we are likely to pick the best possible model.

In addition to reporting the MCC, we will also look at values that inform us on the type
of biases in the model, namely the positive and negative predictive values. These values,
respectively TP/(TP + FP) and TN/(TN + FN), measure how likely a prediction of,
respectively, presence and absence, are. These range in [0, 1], and values of one indicate
a better performance of the model.

Why not pick one of these instead of the MCC? Well, all modeling is compromise;
we don’t want a model to become too good at predicting absences, to the point where
prediction about presences would become meaningless. Selecting models on the basis
of a measure that only emphasizes one outcome is a risk that we shouldn’t be willing
to take. For this reason, measures that are good at optimizing the value of a negative
and a positive predictions are far better representations of the performance of a model.
The MCC does just this.

The output of cross-validation is given in Figure 5.2 (and compared to the no-skill
classifier in Table 5.1). As we are satisfied with the model performance, we can re-
train it using all the data (but not the part used for testing) in order to make our first
series of predictions.
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Table 5.1.: Overview of the data presented in Figure 5.2, compared to the no-skill clas-
sifier.

Measure Training Validation No-skill

Accuracy 0.879 0.882 0.505
NPV 0.857 0.861 0.449
PPV 0.899 0.9 0.551
MCC 0.757 0.762 0.0

5.4.3. The decision boundary

Now that the model is trained, we can take a break in our discussion of its performance,
and think about why it makes a specific classification in the first place. Because we are
using a model with only two input features, we can generate a grid of variables, and
the ask, for every point on this grid, the classification made by our trained model. This
will reveal the regions in the space of parameters where the model will conclude that
the species is present.

The output of this simulation is given in Figure 5.3. Of course, in a model with more
features, we would need to adapt our visualisations, but because we only use two fea-
tures here, this image actually gives us a complete understanding of the model decision
process. Think of it this way: even if we lose the code of the model, we could use this
figure to classify any input made of a temperature and a precipitation, and read what
the model decision would have been.

The line that separates the two classes is usually refered to as the “decision boundary”
of the classifier: crossing this line by moving in the space of features will lead the model
to predict another class at the output. In this instance, as a consequence of the choice
of models and of the distribution of presence and absences in the environmental space,
the decision boundary is not linear.

Take a minute to think about
which places are more likely to
have lower temperatures on an
island. Is there an additional layer
of geospatial information we
could add that would be
informative?

It is interesting to compare Figure 5.3 with, for example, the distribution of the raw data
presented in Figure 5.1. Although we initially observed that temperature was giving us
the best chance to separate the two classes, the shape of the decision boundary suggests
that our classifier is considering that Corsican nuthatches enjoy colder climates with
more rainfall.

71



5. Supervised classification

Figure 5.3.: Overview of the decision boundary between the positive (blue) and neg-
ative (classes) using the NBC with two variables. Note that, as expected
with a Gaussian distribution, the limit between the two classes looks circu-
lar. The assumption of statistical independance between the features means
that we would not see, for example, an ellipse.
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5.4.4. Visualizing the trained model

We can now go through all of the pixels in the island of Corsica, and apply the model
to predict the presence of Sitta whiteheadi. This result is reported in Figure 5.4. In
order to have a little more information about where the predictions can be trusted, we
also perform a little bit of bootstrapping: in this approach, we re-train the model using
samples with replacement of the training data (500 times), and apply this batch of mod-
els, and measure the proportion of times they give the same prediction as the model
trained on all the data. When this is higher, this indicates that the prediction is robust
with regard to the training dataset.

5.4.5. What is an acceptable model?

When comparing the prediction to the spatial distribution of occurrences (Figure 5.4),
it appears that the model identifies an area in the northwest where the species is likely
to be present, despite limited observations. This might result in more false positives,
but this is the purpose of running this model – if the point data were to provide us
with a full knowledge of the range, there would be no point in running the model. For
this reason, it is very important to nuance our interpretation of what a false-positive
prediction really is. We will get back to this discussion in the next chapters, when
adding more complexity to the model.

5.5. Conclusion

In this chapter, we introduced the Naive Bayes Classifier as a model for classification,
and applied it to a data of species occurrence, in which we predicted the potential pres-
ence of the species using temperature and classification. Through cross-validation, we
confirmed that this model gave a good enough performance (Figure 5.2), looked at the
decisions that were being made by the trained model (Figure 5.3), and finally mapped
the prediction and their uncertainty in space (Figure 5.4). In the next chapter, we will
improve upon this model by looking at techniques to select and transform variables.
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Figure 5.4.: Occurence data (left), prediction of presences in space (middle), with the
uncertainty in the prediction derived from bootstrap replicates (right). As
we could have anticipated from the high values of the MCC, even this sim-
ple model does an adequate job at predicting the presence of Sitta white-
headi.

74



References

by João Pinto. PLoS ONE 6 (3): e18228. https://doi.org/10.1371/journal.pone.
0018228.

Barbet-Massin, Morgane, Frédéric Jiguet, Cécile Hélène Albert, and Wilfried Thuiller.
2012. “Selecting Pseudo-Absences for Species Distribution Models: How, Where
and How Many?” Methods in Ecology and Evolution 3 (2): 327–38. https://doi.
org/10.1111/j.2041-210x.2011.00172.x.

Beery, Sara, Elijah Cole, Joseph Parker, Pietro Perona, and Kevin Winner. 2021.
“Species Distribution Modeling for Machine Learning Practitioners: A Review.”
ACM SIGCAS Conference on Computing and Sustainable Societies (COMPASS),
June. https://doi.org/10.1145/3460112.3471966.

Berteaux, Dominique. 2014. Changements Climatiques Et Biodiversité Du Québec.
Presses de l’Université du Québec. https://doi.org/10.1353/book35753.

Chicco, Davide, and Giuseppe Jurman. 2020. “The Advantages of the Matthews Cor-
relation Coefficient (MCC) over F1 Score and Accuracy in Binary Classification
Evaluation.” BMC Genomics 21 (1). https://doi.org/10.1186/s12864-019-6413-7.

Chollet Ramampiandra, Emma, Andreas Scheidegger, Jonas Wydler, and
Nele Schuwirth. 2023. “A Comparison of Machine Learning and Sta-
tistical Species Distribution Models: Quantifying Overfitting Supports
Model Interpretation.” Ecological Modelling 481 (July): 110353. https:
//doi.org/10.1016/j.ecolmodel.2023.110353.

Clapham, A. R., C. Raunkiaer, H. Gilbert-Carter, A. G. Tansley, and Fausboll. 1935.
“The Life Forms of Plants and Statistical Plant Geography.” The Journal of Ecology
23 (1): 247. https://doi.org/10.2307/2256153.

Elith, Jane, and John R. Leathwick. 2009. “Species Distribution Models: Ecologi-
cal Explanation and Prediction Across Space and Time.” Annual Review of Ecol-
ogy, Evolution, and Systematics 40 (1): 677–97. https://doi.org/10.1146/annurev.
ecolsys.110308.120159.

Fick, Stephen E., and Robert J. Hijmans. 2017. “WorldClim 2: New 1-Km Spatial
Resolution Climate Surfaces for Global Land Areas.” International Journal of Cli-
matology 37 (12): 4302–15. https://doi.org/10.1002/joc.5086.

Guillera-Arroita, Gurutzeta, José J. Lahoz-Monfort, Jane Elith, Ascelin Gordon, Heini
Kujala, Pia E. Lentini, Michael A. McCarthy, Reid Tingley, and Brendan A. Wintle.
2015. “Is My Species Distribution Model Fit for Purpose? Matching Data and
Models to Applications.” Global Ecology and Biogeography 24 (3): 276–92. https:
//doi.org/10.1111/geb.12268.

Hanberry, Brice B., Hong S. He, and Brian J. Palik. 2012. “Pseudoabsence Generation
Strategies for Species Distribution Models.” Edited by Robert Planque. PLoS ONE
7 (8): e44486. https://doi.org/10.1371/journal.pone.0044486.

Hand, David J., and Keming Yu. 2001. “Idiot’s Bayes: Not so Stupid After All?”
International Statistical Review / Revue Internationale de Statistique 69 (3): 385.
https://doi.org/10.2307/1403452.

75

https://doi.org/10.1371/journal.pone.0018228
https://doi.org/10.1371/journal.pone.0018228
https://doi.org/10.1111/j.2041-210x.2011.00172.x
https://doi.org/10.1111/j.2041-210x.2011.00172.x
https://doi.org/10.1145/3460112.3471966
https://doi.org/10.1353/book35753
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.1016/j.ecolmodel.2023.110353
https://doi.org/10.1016/j.ecolmodel.2023.110353
https://doi.org/10.2307/2256153
https://doi.org/10.1146/annurev.ecolsys.110308.120159
https://doi.org/10.1146/annurev.ecolsys.110308.120159
https://doi.org/10.1002/joc.5086
https://doi.org/10.1111/geb.12268
https://doi.org/10.1111/geb.12268
https://doi.org/10.1371/journal.pone.0044486
https://doi.org/10.2307/1403452


5. Supervised classification

Jurman, Giuseppe, Samantha Riccadonna, and Cesare Furlanello. 2012. “A
Comparison of MCC and CEN Error Measures in Multi-Class Predic-
tion.” Edited by Giuseppe Biondi-Zoccai. PLoS ONE 7 (8): e41882.
https://doi.org/10.1371/journal.pone.0041882.

Karger, Dirk Nikolaus, Olaf Conrad, Jürgen Böhner, Tobias Kawohl, Holger Kreft, Ro-
drigo Wilber Soria-Auza, Niklaus E. Zimmermann, H. Peter Linder, and Michael
Kessler. 2017. “Climatologies at High Resolution for the Earth’s Land Surface
Areas.” Scientific Data 4 (1). https://doi.org/10.1038/sdata.2017.122.

Kupervasser, O. 2014. “The Mysterious Optimality of Naive Bayes: Estimation of the
Probability in the System of “Classifiers”.” Pattern Recognition and Image Analysis
24 (1): 1–10. https://doi.org/10.1134/s1054661814010088.

Perl, Ronith Gila Bina, Ella Avidor, Uri Roll, Yoram Malka, Eli Geffen, and Sarig Gafny.
2022. “Using eDNA Presence/Non-Detection Data to Characterize the Abiotic and
Biotic Habitat Requirements of a Rare, Elusive Amphibian.” Environmental DNA
4 (3): 642–53. https://doi.org/10.1002/edn3.276.

Powers, David M. W. 2020. “Evaluation: From Precision, Recall and f-
Measure to ROC, Informedness, Markedness and Correlation.” arXiv.
https://doi.org/10.48550/ARXIV.2010.16061.

Whittaker, Robert H. 1962. “Classification of Natural Communities.” The Botanical
Review 28 (1): 1–239. https://doi.org/10.1007/bf02860872.

76

https://doi.org/10.1371/journal.pone.0041882
https://doi.org/10.1038/sdata.2017.122
https://doi.org/10.1134/s1054661814010088
https://doi.org/10.1002/edn3.276
https://doi.org/10.48550/ARXIV.2010.16061
https://doi.org/10.1007/bf02860872


6. Variable preparation

In Chapter 5, we introduced a simple classifier trained on a dataset of presence and
pseudo-absences of a species (Sitta whiteheadi), which we predicted using the mean
annual temperature as well as the annual total precipitation. This choice of variables
was motivated by our knowledge of the fact that most species tend to have some tem-
perature and precipitation they are best suited to. But we can approach the exercise of
selecting predictive variables in a far more formal way, and this will form the core of
this chapter. Specifically, we will examine two related techniques: variable selection,
and feature engineering.

There are two reasons to think about variable selection and feature engineering – first,
the variables we have may not all be predictive for the specific problem we are trying
to solve; second, the variables may not be expressed in the correct “way” to solve our
problem. This calls for a joint approach of selecting and transforming features. Before
we do anything to our features (transformation or selection), we need to talk about data
leakage.

6.1. The problem: optimal set of BioClim variables for the
Corsican nuthatch

The BioClim suite of environmental variables are 19 measurements derived from
monthly recordings of temperature and precipitation. They are widely used in species
distribution modeling, despite some spatial discontinuities due to the methodology
of their reconstruction (Booth 2022); this is particularly true when working from the
WorldClim version (Fick and Hijmans 2017), and not as problematic when using other
data products like CHELSA (Karger et al. 2017).

The definitions of the 19 BioClim variables are given in Table 6.1. As we can see from
this table, a number of variables are either derived from the same months, or direct
(even sometimes additive) combinations of one another. For this reason, and because
there are 19 variables, this is a good dataset to evaluate the use of variable selection
and transformation.
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Table 6.1.: List of the 19 BioClim variables, including indications of their calculation.
The model we used in Chapter 5 used BIO1 and BIO12.

Layer Description Details

BIO1 Annual Mean Temperature
BIO2 Mean Diurnal Range Mean of monthly (max temp - min temp)
BIO3 Isothermality (BIO2/BIO7) (×100)
BIO4 Temperature Seasonality standard deviation ×100
BIO5 Max Temperature of Warmest Month
BIO6 Min Temperature of Coldest Month
BIO7 Temperature Annual Range (BIO5-BIO6)
BIO8 Mean Temperature of Wettest Quarter
BIO9 Mean Temperature of Driest Quarter
BIO10 Mean Temperature of Warmest Quarter
BIO11 Mean Temperature of Coldest Quarter
BIO12 Annual Precipitation
BIO13 Precipitation of Wettest Month
BIO14 Precipitation of Driest Month
BIO15 Precipitation Seasonality Coefficient of Variation
BIO16 Precipitation of Wettest Quarter
BIO17 Precipitation of Driest Quarter
BIO18 Precipitation of Warmest Quarter
BIO19 Precipitation of Coldest Quarter

In this chapter, we will try to improve the model introduced in Chapter 5, by evaluating
different methods to prepare our predictor variables.

6.2. What is data leakage?

Data leakage is a concept that is, if you can believe it, grosser than it sounds.

The purpose of this section is to put the fear of data leakage in you, because it can,
and most assuredly will, lead to bad models, which is to say (as we discussed in Sec-
tion 3.1), models that do not adequately represent the underlying data, in part because
we have built-in some biases into them. In turn, this can eventually lead to decreased
explainability of the models, which erodes trust in their predictions (Amarasinghe et al.
2023). As illustrated by Stock, Gregr, and Chan (2023), a large number of ecological
applications of machine learning are particularly susceptible to data leakage, meaning
that this should be a core point of concern for us.
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6.2.1. Consequences of data leakage

We take data leakage so seriously because it is one of the top ten mistakes in applied
machine learning (Nisbet et al. 2018). Data leakage happens information “leaks” from
the training conditions to the evaluation conditions; in other words, when the model is
evaluated after mistakenly being fed information that would not be available in real-life
situations. Note that this definition of leakage is different from another notion, namely
the loss of data availability over time (Peterson et al. 2018).

It is worth stopping for a moment to consider what these “real-life situations” are, and
how they differ from the training of the model. Most of this difference can be sum-
marized by the fact that when we are applying a model, we can start from the model
only. Which is to say, the data that have been used for the training and validation of the
model may have been lost, without changing the applicability of the model: it works
on entirely new data. We have discussed this situation in Section 4.1.3: the test of a
model is conducted on data that have never been used for training, because we want to
evaluate its performance in the conditions where it will be applied.

Because this is the behavior we want to simulate with a validation dataset, it is very
important to fully disconnect the testing data from the rest of the data. We can illustrate
this with an example. Let’s say we want to work on a time series of population size,
such as provided by the BioTIME project (Dornelas et al. 2018). One naïve approach
would be to split this the time series at random into three datasets. We can use one to
train the models, one to validate these models, and a last one for testing.

Congratulations! We have created data leakage! Because we are splitting our time
series at random, the model will likely have been trained using data that date from after
the start of the validation dataset. In other words: our model can peek into the future.
This is highly unlikely to happen in practice, due to the laws of physics. A strategy that
would prevent leakage would have been to pick a cut-off date to define the validation
dataset, and then to decide how to deal with the training and testing sets.

6.2.2. Avoiding data leakage

The most common advice given in order to prevent data leakage is the “learn/predict
separation” (Kaufman, Rosset, and Perlich 2011). Simply put, this means that whatever
happens to the data used for training cannot be simultaneously applied to the data used
for testing (or validation).

A counter-example where performing the transformation before the analysis is when the
transformation is explicitly sought out as an embedding, where we want to predict the
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Figure 6.1.: Overview of a data transformation pipeline that introduces data leakage
(left), or that does not introduce data leakage (right). In both cases, a trans-
formation such as a PCA is applied to the data; in the example on the right,
it is applied as part of the model, and can therefore be applied without
breaking the train/predict separation. The pipeline on the left introduces
data leakage, as the training data will be changed by information contained
in the validation data.

position of instances in the embedded space, as in .e.g. Runghen, Stouffer, and Dalla
Riva (2022).

Assume that we want to transform our data using a Principal Component Analysis
(PCA; Pearson (1901)). Ecologists often think of PCA as a technique to explore data
(Legendre and Legendre 2012), but it is so much more than that! PCA is a model, be-
cause we can derive, from the data, a series of weights (in the transformation matrix),
which we can then apply to other datasets in order to project them in the space of the
projection of the training data.

If we have a dataset X, which we split into two components X0 for training ,and X1 for
validation, there are two ways to use a PCA to transform these data. The first is T =
XW, which uses the full dataset. When we predict the position of the validation data,
we could use the transformation T1 = X1W, but this would introduce data leakage: we
have trained the transformation we apply to X1 using data that are already in X1, and
therefore we have not respected the learn/predict separation. This way to introduce data
leakage is extremely common in the species distribution literature (see e.g. De Marco
and Nóbrega 2018).

The second (correct) way to handle this situation is to perform our PCA using T0 =
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X0W0, which is to say, the weights of our PCA are derived only from the training data.
In this situation, whenever we project the data in the validation set using T1 = X1W0,
we respect the learn/predict separation: the transformation of X1 is entirely independent
from the data contained in X1. This is illustrated in Figure 6.1.

6.2.2.1. How to work in practice?

Although avoiding data leakage is a tricky problem, there is a very specific mindset we
can adopt that goes a long way towards not introducing it in our analyses, and it is as
follows: every data transformation step is a modeling step that is part of the learning
process. We do not, for example, apply a PCA and train the model on the projected
variables – we feed raw data into a model, the first step of which is to perform this PCA
for us.

This approach works because everything that can be represented as numbers is a model
that can be trained.

If you want to transform a variable using the z-score, this is a model! It has two pa-
rameters that you can learn from the data, 𝜇 (the average of the variable) and 𝜎 (its
standard deviation). You can apply it to a data point 𝑦 with ̂𝑦 = (𝑦 − 𝜇)𝜎−1. Because
this is a model, we need a dataset to learn these parameters from, and because we want
to maintain the learn/predict separation, we will use the train dataset to get the values
of 𝜇0 and 𝜎0. This way, when we want to get the z-score of a new observation, for
example from the testing dataset, we can get it using ̂𝑦1 = (𝑦1 − 𝜇0)𝜎−1

0 . The data
transformation is entirely coming from information that was part of the training set.

One way to get the learn/predict transformation stupendously wrong is to transform our
validation, testing, or prediction data using ̂𝑦1 = (𝑦1 − 𝜇1)𝜎−1

1 . This can be easily
understood with an example. Assume that the variable 𝑦0 is the temperature in our
training dataset. We are interested in making a prediction in a world that is 2 degrees
hotter, uniformly, which is to say that for whatever value of 𝑦0, the corresponding data
point we use for prediction is 𝑦1 = 𝑦0 + 2. If we take the z-score of this new value
based on its own average and standard deviation, a temperature two degrees warmer in
the prediction data will have the same z-score as its original value, or in other words,
we have hidden the fact that there is a change in our predictors!

Treating the data preparation step as a part of the learning process, which is to say that
we learn every transformation on the training set, and retain this transformation as part
of the prediction process, we are protecting ourselves against both data leakage and the
hiding of relevant changes in our predictors.
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6.3. Variable selection

6.3.1. The curse of dimensionality

The number of variables we use for prediction is the number of dimensions of a problem.
It would be tempting to say that adding dimensions should improve our chances to find
a feature alongside which the classes become linearly separable. If only!

The “curse of dimensionality” is the common term of everything breaking down when
the dimensions of a problem increase. In our perspective, where we rely on the resem-
blance between features to make a prediction, increasing the dimensions of a problem
means adding features, and it has important consequences on the distance between ob-
servations. Picture two points positioned at random on the unit interval: the average
distance between them is 1/3. If we add one dimension, keeping two points but turning
this line into a cube, the average distance would be about 1/2. For a cube, about 2/3. For
𝑛 dimensions, we can figure out that the average distance grows like √𝑛/6 + 𝑐, which
is to say that when we add more dimensions, we make the average distance between
two points go to infinity. This effect is also affecting ecological studies (e.g. Smith et
al. 2017).

Therefore, we need to approach the problem of “which variables to use” with a specific
mindset: we want a lot of information for our model, but not so much that the space in
which the predictors exist turns immense. There are techniques for this.

6.3.2. Step-wise approaches to variable selection

In order to try and decrease the dimensionality of a problem, we can attempt to come up
with a method to decide which variables to include, or to remove, from a model. This
practice is usually called “stepwise” selection, and is the topic of intense debate in ecol-
ogy, although several studies point to the fact that there is rarely a best technique to se-
lect variables (Murtaugh 2009), that the same data can usually be adequately described
by competing models (WHITTINGHAM et al. 2006), and that classifiers can show high
robustness to the inclusion of non-informative variables (Fox et al. 2017). Situations in
which variable selection has been shown top be useful is the case of model transfer (Pe-
titpierre et al. 2016), or (when informed by ecological knowledge), the demonstration
that classes of variables had no measurable impact on model performance (Thuiller,
Araújo, and Lavorel 2004).

Why, so, should we select the variables we put in our models?
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The answer is simple: we seek to solve a specific problem in an optimal way, where
“optimal” refers to the maximization of a performance measure we decided upon a
priori. In our case, this is the MCC. Therefore, an ideal set of predictors is the one that,
given our cross-validation strategy, maximizes our measure of performance.

6.3.3. Forward selection

In forward selection, assuming that we have 𝑓 features, we start by building 𝑓 mod-
els, each using one feature. For example, using the BioClim variables, 𝑚1 would be
attempting to predict presences and absences based only on temperature. Out of these
models, we retain the variable given by argmax𝑓MCC(𝑚𝑓), where MCC(𝑚𝑓) is the
average value of MCC for the 𝑓-th model on the validation datasets. This is the first
variable we add to our set of selected variables. We then train 𝑓 − 1 models, and then
again add the variable that leads to the best possible increase in the average value of the
MCC. When we cannot find a remaining variable that would increase the performance
of the model, we stop the process, and return the optimal set of variables. Forward
selection can be constrained by, instead of starting from variables one by one, starting
from a pre-selected set of variables that will always be included in the model.

There are two important things to consider here. First, the set of variables is only op-
timal under the assumptions of the stepwise selection process: the first variable is the
one that boosts the predictive value of the model the most on its own, and the next vari-
ables in the context of already selected variables. Second, the variables are evaluated
on the basis of their ability to improve the performance of the model; this does not im-
ply that they are relevant to the ecological processes happening in the dataset. Infering
mechanisms on the basis of variable selection is foolish (Tredennick et al. 2021).

6.3.4. Backward selection

The opposite of forward selection is backward selection, in which we start from a com-
plete set of variables, then remove the one with the worst impact on model performance,
and keep proceeding until we cannot remove a variable without making the model
worse. The set of variables that remain will be the optimal set of variables. In almost
no cases will forward and backward selection agree on which set of variables is the best
– we have to settle this debate by either picking the model with the least parameters (the
most parsimonious), or the one with the best performance.

Why not evaluate all the combination of variables?

Keep in mind that we do not know the number of variables we should use; therefore,
for the 19 BioClim variables, we would have to evaluate ∑𝑓 (19

𝑓 ), which turns out to
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be an immense quantity (for example, (19
9 ) = 92378). For this reason, a complete

enumeration of all variable combinations would be extremely wasteful.

6.3.5. Removal of colinear variables

Co-linearity of variables is challenging for all types of ecological models (Graham
2003). In the case of species distribution models (De Marco and Nóbrega 2018), the
variables are expected to be strongly auto-correlated, both because they have innate
spatial auto-correlation, and because they are derived from a smaller set of raw data
(Dormann et al. 2012). For this reason, it is a good idea to limit the number of colinear
variables. In the BioClim variables, there

6.4. Multivariate transformations

6.4.1. PCA-based transforms

Principal Component Analysis (PCA) is one of the most widely used multi-variate tech-
niques in ecology, and is a very common technique to prepare variables in applied
machine learning. One advantage of PCA is that it serves both as a way to remove
colinearity, in that the principal components are orthogonal, and as a way to reduce the
dimensionality of the problem as long as we decide on a threshold on the proportion
of variance explained, and only retain the number of principal components needed to
reach this threshold. For applications where the features are high-dimensional, PCA is
a well established method to reduce dimensionality and extract more information in the
selected principal components (Howley et al. 2005). In PCA, the projection matrix P is
applied to the data using P⊤(x−�), where x is the feature matrix with means �. Typically,
the dimensions of P are lower than the dimensions of x, resulting in fewer dimensions
to the problem. Cutoffs on the dimensions of P are typically expressed as a proportion
of the overall variance maintained after the projection. Variants of PCA include ker-
nel PCA (Schölkopf, Smola, and Müller 1998), using a higher-dimensional space to
improve the separability of classes, and probabilistic PCA (Tipping and Bishop 1999),
which relies on modeling the data within a latent space with lower dimensionality.

6.4.2. Whitening transforms

Another class of potentially very useful data transformations is whitening transforms,
which belongs to the larger category of decorrelation methods. These methods do not
perform any dimensionality reduction, but instead remove the covariance in the datasets.
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Whitening has proven to be particularly effective at improving the predictive ability
of models applied to data with strong covariance structure (Koivunen and Kostinski
1999). In essence, given a matrix of features x, with averages � and covariance C, a
whitening transform W is the one of the matrices that satisfies W⊤CW = I. In other
words, the whitening transform results in a new set of features with unit variance and no
covariance: the dimensionality of the problem remains the same but the new random
variables are independent. Given any dataset with covariance matrix C, if any W is a
whitening transform, then so to are any matrices WR where R performs a rotation with
R⊤R = I. The optimal whitening transform can be derived through a variety of ways
(see e.g. Kessy, Lewin, and Strimmer 2018). The whitening transform is applied to the
input vector using W⊤(x − �): this results in new random variables that have a mean
of 0, and unit variance. The new input vector after the transformation is therefore an
instance of “white noise” (Vasseur and Yodzis 2004).

6.5. Application: optimal variables for Corsican nuthatch

Before we start, we can re-establish the baseline performance of the model from Chap-
ter 5. In this (and the next) chapters, we will perform k-folds cross-validation (see
Section 4.3.4 for a refresher), using 𝑘 = 15. This strategy gives an average MCC of
0.76, which represents our “target”: any model with a higher MCC will be “better”
according to our criteria.

In a sense, this initial model was already coming from a variable selection process,
only we did not use a quantitative criteria to include variables. And so, it is a good
idea to evaluate how our model performed, relative to a model including all the vari-
ables. Running the NBC again using all 19 BioClim variables from Table 6.1, we get
an average MCC on the validation data of 0.794. This is a small increase, but an in-
crease nevertheless – our dataset had information that was not captured by temperature
and precipitation. But this model with all the variables most likely includes extrane-
ous information that does not help, or even hinders, the predictive ability of our model.
Therefore, there is probably a better version of the model somewhere, that uses the
optimal set of variables, potentially with the best possible transformation applied to
them.

In this section, we will start by evaluating the efficiency of different approaches to
variable selection, then merge selection and transformation together to provide a model
that is optimal with regards to the training data we have (the workflow is outlined in
Figure 6.2). In order to evaluate the model, we will maintain the use of the MCC; in
addition, we will report the PPV and NPV (like in Chapter 5), as well as the accuracy
and True-Skill Statistic (TSS). The TSS is defined as the sum of true positive and true
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Figure 6.2.: Overview of the variable selection workflow; starting from a list of vari-
ables and a routine to select them, we will perform cross-validation and
measure whether the model performance increases.

negative rates, minus one, and is an alternative measure to the MCC (although it is more
sensitive to some biases). Although several authors have advocated for the use of TSS
(ALLOUCHE, TSOAR, and KADMON 2006), Leroy et al. (2018) have an interesting
discussion of how the TSS is particularly sensitive to issues in the quality of (pseudo)
absence data. For this reason, and based on the literature we covered in Chapter 5, there
is no strong argument against using MCC as our selection measure.

In Chapter 7, we will revisit the
question of how the MCC is

“better”, and spend more time
evaluating alternatives. For now,

we can safely assume that MCC is
the best.

To prevent the risk of interpreting the list of variables that have been retained by the
model, we will not make a list of which they are (yet). This is because, in order to
discuss the relative importance of variables, we need to introduce a few more concepts
and techniques, which will not happen until Chapter 8; at this point, we will revisit
the list of variables identified during this chapter, and compare their impact on model
performance to their actual importance in explaining predictions.

6.5.1. Variable selection

We will perform four different versions of stepwise variable selection. Forward, for-
ward from a pre-selected set of two variables (temperature and precipitation), back-
ward, and based on the Variance Inflation Factor (with a cutoff of 10). The results are
presented in Table 6.2.
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Table 6.2.: Consequences of different variable selection approaches on the performance
of the model, as evaluated by the MCC, NPV, PPV, accuracy, and True-Skill
Statistic (TSS).

Model Variables MCC NPV PPV Acc. TSS

Chapter 5
baseline

2 0.76 0.859 0.901 0.881 0.76

All var. 19 0.794 0.871 0.922 0.897 0.795
Fwd. 6 0.848 0.901 0.946 0.924 0.849
Fwd.
(constr.)

8 0.83 0.888 0.94 0.915 0.832

Backw. 9 0.846 0.901 0.944 0.923 0.847
VIF 2 0.466 0.793 0.708 0.736 0.434

The best model is given by forward selection, although backwards selection also gives
a very close performance. At this point, we may decide to keep these two strategies,
and evaluate the effect of different transformations of the data.

6.5.2. Variable transformation

Based on the results from Table 6.2, we retain forward and backwards selection as
our two stepwise selection methods, and now apply an additional transformation (as
in Figure 6.2) to the subset of the variables. The results are presented in Table 6.3.
Based on these results, and using the MCC as the criteria for the “best” model, we see
that combining forward selection with a whitening transform gives the best predictive
performance. Note that the application of a transformation does change the result of
variable selection, as evidences by the fact that the number of retained variables changes
when we apply a transformation.

Table 6.3.: Model performance when coupling variable selection with variable transfor-
mation. The measures of performance are given as in Table 6.2, and as we
use the same folds for validation, can be directly compared.

Selection TransformationVariablesMCC NPV PPV Acc. TSS

Fwd. PCA 4 0.853 0.898 0.952 0.926 0.855
Fwd. Whitening 10 0.877 0.918 0.956 0.938 0.878
Fwd. Raw

data
6 0.848 0.901 0.946 0.924 0.849
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Selection TransformationVariablesMCC NPV PPV Acc. TSS

Backw. PCA 13 0.835 0.888 0.943 0.918 0.838
Backw. Whitening 15 0.869 0.913 0.953 0.934 0.871
Backw. Raw

data
9 0.846 0.901 0.944 0.923 0.847

6.5.3. Model selection

In Table 6.2 and ?@tbl-predictions-transformation, we have evaluated a series of sev-
eral modeling strategies, defined by a variable selection and transformation technique.
Using the MCC as our reference for what constitutes the best model, we can now apply
the model to the relevant set of predictors, in order to see how these refinements result
in a new predicted range for the species.

These results are presented in Figure 6.3.

6.6. Conclusion

In this chapter, we have discussed the issues with dimensionality and data leakage, and
established a methodology to reduce the number of dimensions (and possible re-project
the variables) while maintaining the train/predict separation. This resulted in a model
whose performance (as evaluated using the MCC) increased quite significantly, which
resulted in the predicted range of Sitta whiteheadi changing in space.

In Chapter 7, we will finish to refine this model, by considering that the NBC is a
probabilistic classifier, and tuning various hyper-parameters of the model using learning
curves and thresholding. This will result in the final trained model, the behavior of
which we will explore in Chapter 8, to understand how the model makes predictions.
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7. Hyper-parameters tuning

In Chapter 3, we represented the testing and training loss of a model as a function
of the number of gradient descent steps we had made. This sort of representation is
very useful to figure out how well our model is learning, and is called, appropriately
enough, a learning curve. We further discussed that the learning rate (and possibly the
regularization rate), and the number of epochs, where hyper-parameters of the model.
An hyper-parameter is usually defined as a parameter of the model that is controlling
the learning process, but is not itself modified through learning (Yang and Shami 2020).
Hyper-parameters usually need to be determined before the training starts (Claesen and
De Moor 2015), but there are various strategies to optimize them. In this chapter, we
will produce learning curves to find the optimal values of hyper-parameters of the model
we developed in Chapter 5 and Chapter 6.

We will illustrate this using an approach called moving-threshold classification, and
additionally explore how we can conduct searches to tune several hyper-parameters
at once. There are many techniques to sample multiple parameters at the same time,
including Latin hypercube sampling (Huntington and Lyrintzis 1998), orthogonal sam-
pling (McKay, Beckman, and Conover 1979), and grid searches. The common point
to all of these approaches are that they generate a combination of hyper-parameters,
which are used to train the model, and measures of performance are then used to pick
the best possible combination of hyper-parameters. In the process of doing this, we will
also revisit the question of why the MCC is a good measure of the classification perfor-
mance, as well as examine tools to investigate the “right” balance between false/true
positive rates. At the end of this chapter, we will have produced a very good model for
the distribution of the Corsican nuthatch, which we will then explain in Chapter 8.

7.1. Classification based on probabilities

When first introducing classification in Chapter 5 and Chapter 6, we used a model that
returned a deterministic answer, which is to say, the name of a class (in our case, this
class was either “present” or “absent”). But a lot of classifiers return quantitative values,
that correspond to (proxies for) the probability of the different classes. Nevertheless,
because we are interested in solving a classification problem, we need to end up with a
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confusion table, and so we need to turn a number into a class. In the context of binary
classification (we model a yes/no variable), this can be done using a threshold for the
probability.

Note that the quantitative value
returned by the classifier does not
need to be a probability; it simply
needs to be on an interval or ratio

scale.

The idea behind the use of thresholds is simple: if the classifier output ̂𝑦 is larger than
(or equal to) the threshold value 𝜏 , we consider that this prediction corresponds to the
positive class (the event we want to detect, for example the presence of a species). In
the other case, this prediction corresponds to the negative class. Note that we do not,
strictly, speaking, require that the value ̂𝑦 returned by the classifier be a probability. We
can simply decide to pick 𝜏 somewhere in the support of the distribution of ̂𝑦.

The threshold to decide on a positive event is an hyper-parameter of the model. In the
NBC we built in Chapter 5, our decision rule was that 𝑝(+) > 𝑝(−), which when all
is said and done (but we will convince ourselves of this in Section 7.3.1), means that
we used 𝜏 = 0.5. But there is no reason to assume that the threshold needs to be one
half. Maybe the model is overly sensitive to negatives. Maybe there is a slight issue
with our training data that bias the model predictions. And for this reason, we have to
look for the optimal value of 𝜏 .

There are two important values for the threshold, at which we know the behavior of our
model. The first is 𝜏 = min( ̂𝑦), for which the model always returns a negative answer;
the second is, unsurprisingly, 𝜏 = max( ̂𝑦), where the model always returns a positive
answer. Thinking of this behavior in terms of the measures on the confusion matrix,
as we have introduced them in Chapter 5, the smallest possible threshold gives only
negatives, and the largest possible one gives only positives: they respectively maximize
the false negatives and false positives rates.

7.1.1. The ROC curve

This is a behavior we can exploit, as increasing the threshold away from the minimum
will lower the false negatives rate and increase the true positive rate, while decreasing
the threshold away from the maximum will lower the false positives rate and increase
the true negative rate. If we cross our fingers and knock on wood, there will be a point
where the false events rates have decreased as much as possible, and the true events
rates have increased as much as possible, and this corresponds to the optimal value of
𝜏 for our problem.

We have just described the Receiver Operating Characteristic (ROC; Fawcett (2006))
curve! The ROC curve visualizes the false positive rate on the 𝑥 axis, and the true
positive rate on the 𝑦 axis. The area under the curve (the ROC-AUC) is a measure
of the overall performance of the classifier (Hanley and McNeil 1982); a model with
ROC-AUC of 0.5 performs at random, and values moving away from 0.5 indicate better
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(close to 1) or worse (close to 0) performance.The ROC curve is a description of the
model performance across all of the possible threshold values we investigated!

7.1.2. The PR curve

One very common issue with ROC curves, is that they are overly optimistic about the
performance of the model, especially when the problem we work on suffers from class
imbalance, which happens when observations of the positive class are much rarer than
observations of the negative class. In ecology, this is a common feature of data on
species interactions (Poisot et al. 2023). In addition, although a good model will have
a high ROC-AUC, a bad model can get a high ROC-AUC too (Halligan, Altman, and
Mallett 2015); this means that ROC-AUC alone is not enough to select a model.

An alternative to ROC is the PR (for precision-recall) curve, in which the positive pre-
dictive value is plotted against the true-positive rate; in other words, the PR curve (and
therefore the PR-AUC) quantify whether a classifier makes reliable positive predictions,
both in terms of these predictions being associated to actual positive outcomes (true-
positive rate) and not associated to actual negative outcomes (positive predictive value).
Because the PR curve uses the positive predictive values, it captures information that
is similar to the ROC curve, but is in general more informative (Saito and Rehmsmeier
2015).

7.1.3. A note on cross-entropy loss

In Chapter 3, we used loss functions to measure the progress of our learning algorithm.
Unsurprisingly, loss functions exist for classification tasks too. One of the most com-
mon is the cross-entropy (or log-loss), which is defined as

− [𝑦 × log 𝑝 + (1 − 𝑦) × log (1 − 𝑝)] ,

where 𝑦 is the actual class, and 𝑝 is the probability associated to the positive class.
Note that the log-loss is very similar to Shannon’s measure of entropy, and in fact can
be expressed based on the Kullback-Leibler divergence of the distributions of 𝑦 and 𝑝.
Which is to say that log-loss measures how much information about 𝑦 is conveyed by
𝑝. In this chapter, we use measures like the MCC that describe the performance of a
classifier when the predictions are done, but log-loss is useful when there are multiple
epochs of training. Neural networks used for classification commonly use log-loss as
a loss function; note that the gradient of the log-loss function is very easy to calculate,
and that gives it its usefulness as a measure of learning.
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7.2. How to optimize the threshold?

In order to understand the optimization of the threshold, we first need to understand
how a model with thresholding works. When we run such a model on multiple input
features, it will return a list of probabilities, for example [0.2, 0.8, 0.1, 0.5, 1.0]. We
then compare all of these values to an initial threshold, for example 𝜏 = 0.05, giving
us a vector of Boolean values, in this case [+, +, +, +, +]. We can then compare this
classified output to a series of validation labels, e.g. [−, +, −, −, +], and report the
performance of our model. In this case, the very low thresholds means that we accept
any probability as a positive case, and so our model is very strongly biased. We then
increase the threshold, and start again.

As we have discussed in Section 7.1, moving the threshold is essentially a way to move
in the space of true/false rates. As the measures of classification performance capture
information that is relevant in this space, there should be a value of the threshold that
maximizes one of these measures. Alas, no one agrees on which measure this should
be (Perkins and Schisterman 2006; Unal 2017). The usual recommendation is to use
the True Skill Statistic, also known as Youden’s 𝐽 (Youden 1950). The biomedical
literature, which is quite naturally interested in getting the interpretation of tests right,
has established that maximizing this value brings us very close to the optimal threshold
for a binary classifier (Perkins and Schisterman 2005). In a simulation study, using the
True Skill Statistic gave good predictive performance for models of species interactions
(Poisot 2023).

Some authors have used the MCC as a measure of optimality (Zhou and Jakobsson
2013), as it is maximized only when a classifier gets a good score for the basic rates
of the confusion matrix. Based on this information, Chicco and Jurman (2023) recom-
mend that MCC should be used to pick the optimal threshold regardless of the question,
and I agree with their assessment. A high MCC is always associated to a high ROC-
AUC, TSS, etc., but the opposite is not necessarily true. This is because the MCC can
only reach high values when the model is good at everything, and therefore it is not
possible to trick it. In fact, previous comparisons show that MCC even outperform
measures of classification loss (Jurman, Riccadonna, and Furlanello 2012).

For once, and after over 15 years of methodological discussion, it appears that we have
a conclusive answer! In order to pick the optimal threshold, we find the value that
maximizes the MCC. Note that in previous chapters, we already used the MCC as a our
criteria for the best model, and now you know why.
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7.3. Application: improved Corsican nuthatch model

In this section, we will finish the training of the model for the distribution of Sitta
whiteheadi, by picking optimal hyper-parameters, and finally reporting its performance
on the testing dataset. At the end of this chapter, we will therefore have established a
trained model, that we will use in Chapter 8 to see how each prediction emerges.

7.3.1. Making the NBC explicitly probabilistic

In Chapter 5, we have expressed the probability that the NBC recommends a positive
outcome as

𝑃(+|𝑥) = 𝑃(+)
𝑃(𝑥) 𝑃(𝑥|+) ,

and noted that because 𝑃(𝑥) is constant across all classes, we could simplify this model
as 𝑃(+|𝑥) ∝ 𝑃(+)𝑃(𝑥|+). But because we know the only two possible classes are
+ and −, we can figure out the expression for 𝑃(𝑥). Because we are dealing with
probabilities, we know that 𝑃(+|𝑥) + 𝑃(−|𝑥) = 1. We can therefore re-write this
as

𝑃(+)
𝑃(𝑥) 𝑃(𝑥|+) + 𝑃(−)

𝑃(𝑥) 𝑃(𝑥|−) = 1

which after some reorganization (and note that 𝑃(−) = 1 − 𝑃(+)), results in

𝑃(𝑥) = 𝑃(+)𝑃(𝑥|+) + 𝑃(−)𝑃(𝑥|−) .

This value 𝑃(𝑥) is the “evidence” in Bayesian parlance, and we can use this value
explicitly to get the prediction for the probability associated to the class + using the
NBC.

Note that we can see that using the approximate version we used so far (the prediction is
positive if 𝑃 (+)𝑃(𝑥|+) > 𝑃(−)𝑃(𝑥|−)) is equivalent to saying that the prediction
is positive whenever 𝑃(+|𝑥) > 𝜏 with 𝜏 = 0.5. In the next sections, we will challenge
the assumption that 0.5 is the optimal value of 𝜏 .

In Figure 7.1, we show the effect of moving the threshold from 0 to 1 on the value of
the MCC. This figure reveals that the value of the threshold that maximizes the average
MCC across folds is 𝜏 ≈ 0.43. But more importantly, it seems that the “landscape”
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Figure 7.1.: Learning curve for the threshold of the NBC model. Note that the profile
of the MCC with regards to the threshold is relatively flat. In other words,
even picking a non-optimal value of the threshold would not necessarilly
lead to a very bad model. Each grey line corresponds to a fold, and the
blue line is the average.

of the MCC around this value is relatively flat – in other words, as long as we do not
pick a threshold that is too outlandishly low (or high!), the model would have a good
performance. It is worth pausing for a minute and questioning why that is.

To do so, we can look at the distribution of probabilities returned by the NBC, which
are presented in Figure 7.2. It appears that the NBC is often confident in its recommen-
dations, with a bimodal distribution of probabilities. For this reason, small changes in
the position of the threshold would only affect a very small number of instances, and
consequently only have a small effect on the MCC and other statistics. If the distribu-
tion of probabilities returned by the NBC had been different, the shape of the learning
curve may have been a lot more skewed.

7.3.2. How good is the model?

After picking a threshold and seeing how it relates to the distribution of probabilities in
the model output, we can have a look at the ROC and PR curves. They are presented in
Figure 7.3. In both cases, we see that the model is behaving correctly (it is nearing the
point in the graph corresponding to perfect classifications), and importantly, we can
check that the variability between the different folds is low. The model also outper-
forms the no-skill classifier. Taken together, these results give us a strong confidence
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Figure 7.2.: Probabilities assigned to each pixel (bottom), color-coded by their value in
the validation set (top scatterplots). The NBC is making a lot of recommen-
dations very close to 0 or very close to 1, and for this reason, positioning
the threshold anywhere in the middle of the range would give almost simi-
lar results in terms of the MCC.

in the fact that our model with the threshold applied represents an improvement over
the version without the threshold.

7.3.3. Fine-tuning the NBC prior

In the previous section, we have assumed that the prior on occurrences 𝑃(+) was
one half, which is a decision we can revisit. But changing this value would probably
require that we also change the threshold, and for this reason we need to optimize both
hyperparameters at the same time. We present the results of a simple grid search in
Figure 7.4.

Based on these results, it appears that changing the value of the prior has very little
impact on the best MCC we can achieve: the threshold is simply adjusted to reflect
the fact that we assume occurrences to be increasingly likely. In this example, there
is very little incentive for us to change the value of the prior, as it would have a very
small effect on the overall performance of the model. For this reason, we will keep the
previous model (𝑃(+) = 0.5 and 𝜏 ≈ 0.43) as the best one.

A grid search in an exhaustive
sweep of all possible
combinations of parameter values.
In order to make the process more
efficient, refined approaches like
successive halvings (Jamieson
and Talwalkar 2016) can be used.

Just because we decided to use a learning curve does not mean we have to change
the hyper-parameters. Sometimes, this approach reveals that the value of an hyper-
parameter is not really important to model performance, and we need to make a decision
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Figure 7.3.: ROC and PR curve for each fold, calculated on the validation datasets. The
area highlighted in green corresponds to perfect classifiers, and the dashed
line is the no-skill classifier. The solid arrow shows direction alongside
which model performance increases in both cases.

100



7.3. Application: improved Corsican nuthatch model

Figure 7.4.: learning curve for the threshold and prior

on what to do next. Here, although there are marginal changes in the value of the MCC,
they do not feel significant enough to change the value of the prior.

7.3.4. Testing and visualizing the final model

As we are now considering that our model is adequately trained, we can apply it to
the testing data we had set aside early in Chapter 5. Applying the trained model to
this data provides a fair estimate of the expected model performance, and relaying this
information to people who are going to use the model is important.

We are not applying the older versions of the model to the testing data, as we had decided
against this. We had established the rule of “we pick the best model as the one with
the highest validation MCC”, and this is what we will stick to. To do otherwise would
be the applied machine learning equivalent of 𝑝-hacking, as the question of “what to
do in case a model with lower validation MCC had a better performance on the testing
data?” would arise, and we do not want to start questioning our central decision this
late in the process.

We can start by taking a look at the confusion matrix on the testing data:
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(153 12
4 105)

This is very promising! There are far more predictions on the diagonal (258) than
outside of it (16), which suggests an accurate classifier. The MCC of this model is
0.881, its true-skill statistic is 0.872, and its positive and negative predictive values are
respectively 0.927 and 0.963. In other words: this model is extremely good. The values
of PPV and NPV in particular are important to report: they tell us that when the model
predicts a positive or negative outcome, it is expected to be correct more than 9 out of
10 times.

The final predictions are shown in Figure 7.5. Although the range map is very similar
to the one we produced by the end of Chapter 6, the small addition of an optimized
threshold leads to a model that is overall a little more accurate. Note that the uncertainty
has a much nicer spatial structure when compared to our initial attempt (in Figure 5.4):
there are combinations of environmental variables that make prediction more difficult,
but they tend to be very spatially clustered.

7.4. Conclusion

In this chapter, we have refined a model by adopting a principled approach to estab-
lishing hyper-parameters. This resulted in a final trained model, which we applied to
produce the final prediction of the distribution of Sitta whiteheadi. In Chapter 8, we will
start asking “why”? Specifically, we will see a series of tools to evaluate why the model
was making a specific prediction at a specific place, and look at the relationship between
the importance of variables for model performance and for actual predictions.
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8. Explaining predictions

In this chapter, we will

navigate the accuracy-explainability for public policy Bell et al. (2022)

what is explainable differs between stakeholders Amarasinghe et al. (2023)

biodiversity need sustained model uptake Weiskopf et al. (2022)

Štrumbelj and Kononenko (2013) monte carlo approximation of shapley values

Wadoux, Saby, and Martin (2023) mapping of shapley values

Mesgaran, Cousens, and Webber (2014) mapping of most important covariates

Lundberg and Lee (2017) SHAP

transfo in model = we can still apply these techniques instead of asking “what does PC1
= 0.4 mean”
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